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1 Math Review

1.1 Vector Spaces and Norms

Definition 1.1 (Vector Space). A vector space X is a set of elements with two operations, addition (+)
and scalar multiplication (·), and an additive identity 0 ∈ X satisfying:

1. x+ y = y + x

2. (x+ y) + z = x+ (y + z)

3. 0 + x = x, ∀x ∈ X

4. α(x+ y) = αx+ αy

5. (α+ β)x = αx+ βx

6. (αβ)x = α(βx)

7. 0x = 0 and 1x = x

Examples include RK and C[a, b], the set of all continuous functions from [a, b]→ R.

Definition 1.2 (Norm). Let X be a vector space. A norm is a functional, ‖·‖ : X → R satisfying

1. ‖x‖ ≥ 0, ∀x ∈ X and ‖x‖ = 0 if and only if x = 0.

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (̇Triangle Inequality)

3. ‖αx‖ = |α|‖x‖, ∀α ∈ R, x ∈ X

Examples of norms include the `p norms on RK or the sup-norm on the space of all bounded, real valued,
functions. On RK all norms are equivalent, which is to say that for any two norms ‖ · ‖1, ‖ · ‖2 there are
constants C1, C2 such that C1‖ · ‖2 ≤ ‖ · ‖1 ≤ C2‖ · ‖2. However, this is not generally the case for functional
vector spaces. For example on C[a, b] there is no constant c such that, for all f :

sup
x∈[a,b]

f(x) = ‖f‖∞ ≤ c‖f‖2 =

(∫ b

a

f2(x)dx

)1/2

.

Closely related to a norm is the concept of a metric, which is a way of defining a distance on a space.

Definition 1.3 (Metric). Let X be a vector space. A metric (or distance metric) on X is a functional
d(x, y) : X ×X → R satisfying:

1. d(x, y) ≥ 0,∀x, y and d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z

It is straightforward to verify that, given a norm on a vector space X, we can generate a valid metric:

d‖·‖(x, y) := ‖x− y‖.

We return to these concepts when discussing a topology.

1.2 Topology and Continuity

A topology is a general structure under which we can discuss concepts such as convergence and continuity.
We can start with a general structure and then discuss spaces where the topology is generated by a metric
(or norm).

The most recent version of these notes can be found here.

https://github.com/mnavjeev/portmanteau/blob/main/wcep.pdf
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Definition 1.4 (Topology). A topology on a set X is a collection of subsets of X, τ ⊂ 2X satisfying:

1. ∅, X ∈ τ .

2. τ is closed under finite intersections, if {Ak}Kk=1 ∈ τ then
⋂K
k=1Ak ∈ τ .

3. τ is closed under arbitrary unions. For any index set I, if {Ak}k∈I ∈ τ then
⋃
k∈I Ak ∈ τ .

The elements of A ∈ τ are called open sets. A set B is closed if it’s complement is in τ , Bc ∈ τ .

Some simple examples include the trivial topology, τ =
{
X, ∅

}
and the discrete topology τ = 2X . Given a

topology, we can define some familiar terms:

Definition 1.5 (Interior). For a subset A ⊆ X, the interior of A, denoted A◦, is the largest open set included
in A (where largest is defined under the usual subset ordering). We can also express this as the union of all
open sets contained by A.

A◦ =
⋃
{B : B ∈ τ , B ⊆ A} .

Note that a set is open if and only if A = A◦.

Definition 1.6 (Closure). For a subset A ⊆ X, the closure of A, denoted Ā, is the smallest closed set the
covers A. We can express this as the intersection of all closed sets containing A:

Ā =
⋂
{B : Bc ∈ τ , A ⊆ B} .

By De-Morgan’s law and closure of the topology under arbitrary union we can see that this intersection
always gives a closed set. A set is closed if and only if A = Ā.

Definition 1.7 (Boundary). The boundary of a set A, denoted δA, is Ā \A◦.

A useful concept when talking about convergence under a topology is that of a neighborhood of a point
x ∈ X.

Definition 1.8 (Neighborhood). For a point x ∈ X a set V is a neighborhood of X if x ∈ V ◦.

Lemma 1.1. Suppose x ∈ Ā, then for every neighborhood of x, Vx, we have that Vx ∩A 6= ∅.

Proof. Let x ∈ Ā and suppose for some neighborhood Vx of x we have that Vx ∩A = ∅. Then we know that
V ◦x ∩A = ∅. Take Ã = Ā ∩ (V ◦x )c. We can verify that this is a smaller closed set that also contains A.

We can now use the topology to define limit points and convergence.

Definition 1.9 (Limit Point). A point x ∈ X is a limit point of a set A ⊆ X if, for every neighborhood V
of x,

A
⋂(

V \ {x}
)
6= ∅.

In other words, every neighborhood of x intersects with A at a point other than x. Let A′ be the set of all
limit points of A ⊆ X.

Lemma 1.2. If S is a subset of X, then S̄ = S ∪ S′.

Proof. First show that S̄ ⊆ S ∪ S′. Let x ∈ S̄. If x ∈ S then we are done. Otherwise, suppose x ∈ S̄ \ S.
This means that for all Vx we have that S ∩ Vx = S ∩

(
Vx \ {x}

)
. By the result of Lemma 1.1, we have that

Vx ∩ S 6= ∅. So, x ∈ S′.

Now suppose that x ∈ S ∪ S′. Clearly if x ∈ S then x ∈ S̄. Suppose then that x ∈ S′ \ S but x 6∈ S̄. Let S̃
be any closed set containing S, that is S ⊆ S̃. For sake of contradiction, suppose that x 6∈ S̃ (x is a limit
point of S that is not in S̃). Because S̃ is closed we know that S̃c ∈ τ . Further, we know that x ∈ S̃c so that
S̃c is a neighborhood of x. Since x is a limit point of S, we know that S̃c ∩ S = S̃c ∩ S \ {x} 6= ∅. However,
we also know that S ⊆ S̃ so we have a contradiction. Therefore, it must be that x ∈ S̄ which completes the
proof.
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Lemma 1.3 (Characterization of Closed Sets). A set is closed if and only if it contains all of its limit points.

Proof. This is a consequence of Lemma 1.2 and the fact that A is closed if and only if Ā = A.

Definition 1.10 (Convergence). We say a sequence {xn}∞n=1 converges to a point x ∈ X if for every
neighborhood Vx of x, there exists a number M such that for all m ≥M , xm ∈ Vx.

Note that under the trivial topology τ =
{
∅, X

}
all sequences converge to any point x ∈ X whereas under

the discrete topology on R, τ = 2R, the only sequences that converges to a point x are the trivially convergent
sequences, xn = x for all n ≥M and some M .

Definition 1.11 (Continuity). Let (X , τ1) and (Y, τ2) be two topological spaces and f : X → Y. We say f
is continuous if f−1(A) ∈ τ1 for all A ∈ τ2. That is, a continuous function maps open sets to open sets.

We can now get ready to combine the notions of continuity and convergence coming from a topology with
the notions that we are familiar with from metric spaces. First, we need to define the topology generated by
a metric.

Definition 1.12 (Generated Topology). Let A be a collection of subsets of X. The topology generated by
A, 〈A〉 is the smallest topology that contains A:

〈A〉 =
⋂
{τ : A ⊆ τ} .

We will then define the topology generated by a metric as the topology generated by the collection of open
balls B(x, ε).

Definition 1.13 (Open Ball). Let d(x, y) be a metric on a vector space X. For any point x ∈ X define the
open ball of size ε around x as:

B(x, ε) =
{
y : d(x, y) ≤ ε

}
.

In a metric space, we consider the topology generated by all the open balls τd = 〈
{
B(x, ε) : x ∈ X, ε > 0

}
〉.

In fact, the set of open balls is a basis for this topology, which means that every open set A in τd and
any point x ∈ A, there is an open ball B such that x ∈ B ⊆ A.1. Many topological properties such as
continuity or convergence can be verified by simply confirming the properties for all members of a basis for
the topology. This ties together the “epsilon-delta” notions of continuity and convergence with the more
general topological versions given above.

For the rest of this subsection we will talk about separability and compactness, but give examples using
normed-metric spaces instead of talking in generality about the topology.

Definition 1.14 (Dense Subset). A topological space (X, τ ) has a dense subset A if Ā = X. Equivalently,
by Lemma 1.2, every point of X is either in A or is a limit point of A.

Informally, all points in X are either in A or arbitrarily “close” to A. As an example, in the standard
topology on R generated by the metric d(x, y) = |x − y|, the rationals Q are dense. We also have that, for
the set of continuous functions under the sup norm, the set of all polynomials is dense, which means that
we can approximate a function arbitrarily well with them.

Definition 1.15 (Seperable Space). We say that a topological space (X, τ ) is separable if it has a countable
dense subset.

As we went over above, the real line with its standard topology is separable. The Lp[a, b] spaces are also
generally separable for 1 ≤ p ≤ ∞. However L∞ is not separable, which will cause issues (this is not the
example below).

1In fact, the set of all open balls with rational ε is a basis for the topology
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Example 1.1 (Bounded functions with the sup norm is not seperable). Let {fi}i∈N be a countable set of
functions on B∞[a, b]. Let {qi}i∈N be some counting of the rational numbers between a and b. Let f̃ be
some function that is equal to 0 except on the rational numbers. For each rational number qi define

f̃(qi) =

{
1 if fi(qi) ≤ 0

−1 if fi(qi) > 0
.

We can see that f̃ is bounded (and integrates to 0), but it is at least distance one from each function in
{fi}i∈N.

Initially I thought this example would work for L∞[a, b], but this only forces a difference on a set of measure
0 and I believe L∞ works with an essential supremum norm.

Another important/useful concept is that of compactness. The general notion is given below:

Definition 1.16 (Compact Set). A set A is compact if for every collection of open sets {Gi} such that
A ⊂

⋃
Gi, there is a finite subcollection that also covers A.

Example 1.2. The real-line is not compact. Consider the open cover
{

(n, n+ 1)|n ∈ Z
}

Example 1.3. The interval (0, 1] is not compact. Consider the open cover
{

(1/n, 1 + 1/n)|n ∈ N
}

Theorem 1.1 (Heine-Borel). For a subset S of the Euclidean Space2, Rn, the following statements are
equivalent:

• S is closed and bounded

• S is compact

Compactness is nice because of various extreme value theorems that ensure that a supremum or infimum is
attained. Heine-Borel gives a nice way of characterizing compactness for Euclidean Spaces, but there is no
equivalent result for general metric spaces. We have to strengthen the boundedness assumption.

Definition 1.17 (Totally Bounded). A set A is totally bounded if for each ε > 0 there exists a finite

sequence {a1, . . . , an} such that for Bi =
{
a ∈ A : ‖a− ai‖ ≤ ε

}
,
⋃N
i=1Bi covers A.

Intuition: For any precision ε, you can find a finite set of points that describe A arbitrarily well. (much
more demanding in infinite dimensions than just bounded).

Theorem 1.2. In a complete metric space, the following are equivalent:

• A is a compact subset

• A is closed and totally bounded

• Every sequence in A has a convergent subsequence which converges to a point in A.

For a compact set T , let C(T ) be the set of continuous functions from T to R equipped with the sup norm.
We may want to characterize when a subset K of C(T ) is compact.

Definition 1.18 (Equicontinuous). A set of functions K ⊆ C(T ) is equicontinuous if for every t0 ∈ T and
ε > 0 there is a δ > 0 such that |f(t)− f(t0)| < ε whenever ‖t− t0‖ < δ for all f ∈ K.

This is a bit like to uniformly continuity but adapted a bit to deal with a function space.

Theorem 1.3 (Arzela-Ascoli). If T is compact, then K ⊆ C(T ) is compact (under the sup-norm) if and
only if K is bounded and equicontinuous.

This concludes our discussion of topology and continuity. We now review measurability.

2That is the space Rn equipped by the topology generated by the standard distance metric
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1.3 Probability Spaces and Outer Measure

Definition 1.19 (Sigma Algebra). A collection of subsets F is a sigma-algebra (or sigma-field) if it contains
the whole set and is closed under complement and under countable union.

Definition 1.20 (Borel Sigma Algebra). For any collection of sets A, we call the smallest sigma algebra
containing A, σ(A), the sigma algebra generated by A. The Borel sigma algebra on a topological space is
the sigma algebra generated by all the open sets, B(X) = σ(τ ).

The Borel sigma algebra is useful as it makes all continuous functions measurable (defined below).

Definition 1.21 (Probability Space). A probability space is a triple (Ω,F ,P) consisting of a set of elements
Ω, a sigma algebra on Ω, F , and a probability measure P : F → [0, 1] satisfying:

1. P(A) ≥ P(∅) = 0

2. If Ai ∈ F is a countable sequence of disjoint sets then P
(⋃

iAi
)

=
∑
i P(Ai)

3. P(Ω) = 1.

A measurable function between two spaces equipped with sigma algebra’s is simply one that maps measurable
sets to measurable sets, similar to the definition of a continuous function.

Definition 1.22 (Measurable Map). A function f : (X ,A) → (Y,B) is measurable if f−1(B) ∈ A for all
B ∈ B

Lemma 1.4 (Lemma 1.3.1 VdV& W). The Borel σ-field on a metric space D is the smallest σ-field that
makes all elements of Cb(D) measurable (with respect to the Borel sets on R).1.

Proof. For any closed set F , F is the null set
{
x : f(x) = 0

}
of the continuous, bounded function, x 7→

d(x, F ) ∧ 1. Since the singleton {0} is a closed set in R (all metric spaces are Hausdorff), F must be in
the sigma algebra on D to make d(x, F ) ∧ 1 measurable. Since all the closed sets generate the Borel σ-field
(because σ-fields are closed under complement), all Borel sets must be included in the sigma-algebra on
D.

Given this, we can abstractly think about a random variable as a measurable map from a probability space
into another measurable space (typically the real-line). Measurability ensures that things like expectations
and probabilities of random variables are well defined.

However, measurability becomes a problem when we are dealing with random functions. For example, if
X is a map from a probability space to L∞[a, b], the Borel-sigma algebra on L∞[a, b] is quite large (its
not separable). This means that measurable sets in L∞[a, b] may not map back to measurable sets on the
probability space Ω,F ,P.

This is a problem because L∞ is typically a useful space to work in for empirical process theory. So we have
to find a way to relax measurability. This means that we work with outer expectations and probabilities:

Definition 1.23 (Outer Measure and Inner Measure). Let (Ω,F ,P) be a probability space T : Ω → R.
Define the outer expectation:

E?[T ] = inf
{
E[U ] : T ≤ U,U is measurable

}
.

and the inner expectation:

E?[T ] = sup
{
E[U ] : U ≤ T,U is measurable

}
.

We can use this to define inner and outer probability measures by restricting T to be the indicator function
for an arbitrary set B. Inner and outer expectations are generally nicely behaved but they require modified
versions of dominated and monotone convergence and Fubini’s theorem breaks down.

1Cb(D) is the set of all continuous bounded functions from D → R, where R is endowed with the standard topology on the
real line
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2 Weak Convergence

2.1 Definition and Characterizations

We can now talk about weak convergence of random variables. Let Xn be a real-valued random variable
with cdf Fn(t) and let X be a random variable with cdf F (t). The typical definition of weak convergence is

that Xn
L→ X if Fn(t)→ F (t) pointwise at all continuity points of F . This is not super general for non-real

valued random maps.

Theorem 2.1 (Portmanteau). For real random variables Xn
L→ X is equivalent to:

• E
[
g(Xn)

]
→ E[g(X)] for all bounded continuous functions.

• For all open sets G, lim inf P(Xn ∈ G) ≥ P (X ∈ G).

• For all closed sets K, lim supP(Xn ∈ K) ≤ P(X ∈ K).

This motivates the theory of weak convergence for general metric spaces. Let D be a complete metric space
with metric d. We can equip D with it’s Borel-sigma algebra as defined in Definition 1.20 and a tight
probability measure as defined in Definition 2.1. Let Cb (D) be the set of all continuous and bounded real
functions on D. If X is a random variable, X : (Ω,F ,P)→ D then it’s law is given L = P ◦X−1.

Definition 2.1 (Tight Probability Measure). A probability measure is tight if for every ε > 0 there is a
compact set Kε such that P (Kε) ≥ 1− ε

This is a generalization of bounded in probability I believe.

Definition 2.2 (Borel Law). For a random variable X, we say that X has a Borel Law L if

P (X ∈ A) =

∫
A

dL.

for all Borel sets A.

Given this setup, we can now define weak convergence:

Definition 2.3 (Weak Convergence). Let (Ωn,Fn,Pn) be a sequence of probability spaces and Xn : Ωn → D.

Then we say that Xn
L→ X if:

E?
[
f(Xn)

]
→ E[f(X)].

for every f ∈ Cb(D)

We can characterize this convergence using another Portmanteau theorem.

Theorem 2.2 (Portmanteau). The following are equivalent:

1. Xn
L→ X

2. lim inf P?(Xn ∈ G) ≥ P(X ∈ G) for all open sets G.

3. lim supP?(Xn ∈ F ) ≤ P(X ∈ F ) for every closed set F .

4. limP (Xn ∈ B) = P (X ∈ B) for every Borel set B with P (X ∈ δB) = 0.

Proof. This proof is in a few steps.

(4) =⇒ (3): Suppose that limP (Xn ∈ B) = P (X ∈ B) for every Borel set B with P(X ∈ δB) = 0. Let
F be a closed set and let F ε = {x : d(x, F ) < ε}. The sets δF ε are disjoint for different values of ε > 0
(The boundary of this set is δF ε = {x : d(x, F ) = ε}), so at most countably many of them can have nonzero
L-measure (otherwise the measure of the entire space would be infinite). Choose a sequence εm ↓ 0 with
L(δF εm) = 0 for each m (this is possible because only countably many ε have L(F ε) 6= 0). For a fixed m,
by (4) we have that:

lim supP ? (Xα ∈ F ) ≤ lim supP ?
(
Xα ∈ F εm

)
= L

(
F εm

)
.
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letting m→∞ gives (3).

(3)⇐⇒ (2): Take any closed set F . Its complement F c is open. If

lim inf P?(Xn ∈ F c) ≥ P(X ∈ F c).

Then

lim supP?(Xn ∈ F ) ≤ lim inf 1− P?(Xn ∈ F c)
≤ 1− P(X ∈ F c)
= P(X ∈ F )

a symmetric argument shows the backwards direction.

(2)+(3) =⇒ (4): This is straightforward if we recall that, for any set with L(δB) = 0 we have that L(B) =
L(B̄). Then we bound the lim sup by the lim inf:

lim supP?(X ∈ B) ≤ lim supP(X ∈ B̄) ≤ P(X ∈ B̄) = P(X ∈ B) ≤ lim inf P?(Xn ∈ B).

which gives (4).

(1) =⇒ (2): Take any G open and define the sequence of functions:

fm(x) := min(1,m · d(x,Gc))

Notice that fm(x) ∈ Cb(D) and fm(x) ≤ 1{x ∈ G}. So, for every m we have that

lim inf P?(X ∈ G) = lim inf E?
[
1{X ∈ G}

]
≥ lim inf E?

[
fm(X)

]
≥ E[fm(X)]

since fm(x) ↑ 1{X ∈ G} by monotone convergence we get the result in (2).

Question: How do we know from weak convergence that this sequence converges in inner expectation?

By VdV and Wellner, weak convergence implies (is equivalent to) lim inf E?
[
f(Xn)

]
≥ E

[
f(X)

]
for every

bounded, Lipschitz continuous, non-negative f . I think the argument for why this is the case goes: Let f ≥ 0
be bounded and continuous. Then by weak convergence

lim supE?[−f(Xn)] = E[−f(X)].

Taking negatives will give:

lim inf E?[f(Xn)] ≥ − lim supE?[−f(Xn)] = E[f(X)].

In any case, fm(X) is Lipschitz continuous which gives the result.

(2) =⇒ (1): (SKETCH)

• Suppose f(x) ≥ 0 is continuous and bounded

• Approximate it from above and below by indicator functions of open sets.

Weak convergence is nice because it gives the continuous mapping theorem.

Theorem 2.3 (Continuous Mapping Theorem). Let g : D → E be continuous at every point D0 ⊆ D. If

Xn
L→ X and P(X ∈ D0) = 0 then g(Xn)

L→ g(X).
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Proof. (Without Discontinuity Points): Let Zn = g(Xn) and Z = g(X). We want to show that E?
[
f(Zn)

]
→

E
[
f(Z)

]
for all f ∈ Cb(D;E).

lim
n→∞

E[f(Zn)] = lim
n→∞

E[f(g(Xn))] = E[f(g(X))] = E[f(Z)].

The main step here is weak convergence of Xn and the stability of Cb(D;E) under composition.

(With Discontinuity Points, from VdV&W): The set Dg of all points at which g is discontinuous can be
written

Dg =

∞⋃
m=1

∞⋂
k=1

{
x : ∃y, z ∈ B(x, 1/k) with dE(g(y), g(x)) > 1/m

}
.

Intuition: Recall that g is continuous at x if for every m ∈ N there exists a k ∈ N such that1

y, z ∈ B(x, 1/k) =⇒ dE(g(y), g(z)) < 1/m

If the function is not continuous at x you can find a counterexample for some k,m ∈ N.

Let Gmk =
{
x : ∃y, z ∈ B(x, 1/k) with dE(g(y), g(x)) > 1/m

}
. Every Gmk is open (if x is in Gkm the points

just around x will be as well so that we can write Gkm as a union of open balls) so that Dg is a Borel set.
For every closed F we then have that:

g−1(F ) ⊆ g−1(F ) ∪Dg.

By Portmanteau:

lim supP?
(
g(Xn) ∈ F

)
≤ lim supP ?

(
Xn ∈ g−1(F )

)
≤ P

(
X ∈ g−1(X)

)
= P

(
X ∈ g−1(F )

)
= P

(
g(X) ∈ F

)
Applying Portmanteau again gives weak convergence.

Example 2.1. Take Gn ∈ L∞(R):

Gn(t) :=
1√
n

n∑
i=1

(
1{Xi ≤ t} − E

[
1{X ≤ t}

])
and suppose that Gn

L→ G where G is some other element of L∞(R). Let Z : L∞(R)→ R be defined as:

Z(f) := sup
t
|f(t)|.

this function is continuous. Applying the continuous mapping theorem to Z allows us to build uniform
confidence intervals.

Let γ1−α be the 1− α quantile of Z := supt |G(t)| and construct a confidence interval (at each t): 1

n

n∑
i=1

1{Xi ≤ t} − γ1−α/
√
n ,

1

n

n∑
i=1

1{Xi ≤ t}+ γ1−α/
√
n

 .
Then:

P

 1

n

n∑
i=1

1{Xi ≤ t} − γ1−α/
√
n ≤ E

[
1{X ≤ t}

]
≤ 1

n

n∑
i=1

1{Xi ≤ t}+ γ1−α/
√
n : for all t


= P

(∣∣Gn(t)
∣∣ ≤ γ1−α ∀t

)
= P

(
sup
t
|Gn(t)| ≤ γ1−α

)
1Topologically, this is saying that the inverse map of every open neighborhood of f(x) is an open neighborhood of x
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But by continuous mapping theorem and Portmanteau, if P(supt |G| = γ1−α) = 0:

lim
n→∞

P
(

sup
t

∣∣Gn(t)
∣∣ ≤ γ1−α

)
= P

(
sup
t

∣∣G(t)
∣∣ ≤ γ1−α

)
= 1− α.

This sort of argument can be applied more generally to functions Gn(t) = m̂(t)−m(t) to construct uniform
confidence intervals.

This shows the usefulness of Portmanteau and Continuous Mapping Theorem. For finite dimension vectors
we can use the central limit theorem to establish weak convergence to a normal distribution. However, when
Xn is a random element in L∞ it may be harder to show that Xn  X for some other X ∈ L∞.

• Don’t want to check E[f(Xn)] → E[f(X)] for all f ∈ Cb(L∞) [There are at least 20 functions in this
class]

Instead we will try to use the structure of L∞ to show the result.

Definition 2.4 (Asymptotic Tightness). A sequence Xn of random maps is asymptotically tight if for every
ε, δ > 0 there is a compact Kε such that

lim inf P?

(
Xn ∈ Kδ

ε

)
≥ 0.

where Kδ
ε = {y ∈ D : d(y,Kε) < δ} is the “δ-enlargement” around Kε.

Definition 2.5 (Asymptotic Measurability). A sequence Xn of random maps is asymptotically measurable
if for all f ∈ Cb(D) :

E?f(Xn)− E?f(Xn)→ 0.

We would like for a sequence Xn that weakly converges to an element X to inherit some properties from X:

Lemma 2.1 (Lemma 1.3.8 VdV& W). The following are true:

1. If Xn
L→ X then Xn is asymptotically measurable

2. If Xn
L→ X then Xn is asymptotically tight if and only if X is tight.

Proof. (1): Take any function f ∈ Cb(D). By definition of weak convergence we know that

limE?
[
f(Xn)

]
= E[f(X)] and limE?

[
−f(Xn)

]
= E[−f(Xn)].

I think we should have that −E?
[
f(Xn)

]
≥ E?

[
−f(Xn)

]
for any f which give the result (I think this holds

with equality but I leave it as an inequality since this is all we need for the result).

(2): Fix ε > 0. If X is tight then there is a compact K with P(X ∈ K) > 1− ε. By Portmanteau:

lim inf P?(Xn ∈ Kδ) ≥ P(X ∈ Xδ).

which is larger than 1− ε for every δ > 0.

Conversely, suppose that Xn is asymptotically tight. Then there exists a compact K with lim inf P?(Xn ∈
Kδ) ≥ 1− ε. By Portmanteau,

1− ε ≤ lim inf P?(Xn ∈ Kδ) ≤ lim supP?(Xn ∈ Kδ) ≤ P
(
X ∈ Kδ

)
.

Let δ → 0 by monotone convergence to complete the result. 2

2This proof relies on compact sets being closed in metric spaces. The proof of this is as follows: Let A be compact in a
metric space. We wish to show that A is closed. Take a point x ∈ X \ A. To show that A is closed, we want to show that
there is an open neighborhood of x that is not in A (this will show that A contains all of its limit points). For every a ∈ A, let

Ua = B
(
a,
d(a,x)

2

)
and Va = B

(
x,
d(a,x)

2

)
. By triangle inequality, Ua and Va are disjoint. The union of all the sets Ua for all

points a ∈ A is an open cover of A. By compactness of A, we can get a finite subcover Ua1 , . . . , Uan . But then Va1 ∩ · · · ∩ Van
is an open neighborhood of x that is disjoint from A. So A is closed. Actually this argument holds in general Hausdorff spaces.
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The converse is not generally true. Let Xn = −1 if n is odd and Xn = 1 if n is even. This sequence is
asymptotically measurable and asymptotically tight but clearly does not converge. However, it does converge
among a subsequence. This is the idea behind the partial converse to this theorem provided by Pohorov’s
Theorem.

Theorem 2.4 (Pohorov’s Theorem, Theorem 1.3.9 VdV& W). Let Xn be an asymptotically tight and
asymptotically measurable sequence. Then there is a subsequence Xnj that converges weakly to a tight Borel
law.

Example 2.2 (Problem 7; Ch 1.3 VdV& W). Let Xn be a sequence of random elements in D and g : D→ E
a continuous function. Want to show that:

1. If Xn is asymptotically tight then g(Xn) is asymptotically tight.

2. If Xn is asymptotically measurable then g(Xn) is asymptotically measurable.

Proof. 1) Suppose that Xn is asymptotically tight. Fix ε > 0. We know that there exists a compact set K
such that, ∀δ1 > 0

lim inf P?
(
Xn ∈ Kδ1

)
≥ 1− ε.

The event
{
Xn ∈ Kδ1

}
is a subset of the event that

{
g(Xn) ∈ g(Kδ1)

}
so

lim inf P?
(
g(Xn) ∈ g(Kδ1)

)
≥ lim inf P?

(
Xn ∈ Kδ

1

)
≥ 1− ε.

To finish recall that g(K) is a compact set and choose δ1 such that g(Kδ1) ⊆ g(K)δ (always possible to do
so by continuity of g).

2) Suppose that Xn is asymptotically measurable. This means that, for any f ∈ Cb(D):

E?
[
f(Xn)

]
− E?

[
f(Xn)

]
→ 0.

Let f̃ ∈ CB(E). For any continuous g : D → E, f ◦ g is a continuous and bounded function from D → R.
This completes the proof.

2.2 Weak Convergence in Space of Bounded Functions

So far, we have defined weak convergence. But, how do we show that Xn
L→ X? In RK we have the central

limit theorem, but no direct analog for random maps into L∞.

First, some definitions.

Definition 2.6 (Marginal Random Variable). Let Xn be a random map into L∞(T ) (the space of all
bounded functions from T → R). Then, Xn(t) is the marginal distribution of Xn at t. We can view Xn(t)
as the composition of Xn with πt or directly as a real-valued random variable.

A general strategy will be to deal with the marginals directly. By the central limit theorem, we have
conditions for the weak convergence of Xn(t). Want to know what these results imply for the random map
Xn.

Lemma 2.2 (Lemma 1.5.1, VdV&W). Let Xn : Ω→ L∞(T ) be asymptotically tight. Then it is asymptoti-
cally measurable if and only if Xn(t) is asymptotically measurable for every t ∈ T .

Lemma 2.3 (Lemma 1.5.3, VdV&W). Let X and Y be tight Borel measurable maps into L∞(T ). Then

X
L
= Y if and only if X(t)

L
= Y (t) for all t ∈ T .

Theorem 2.5 (Theorem 1.5.4, VdV&W). Let Xn : Ωn → L∞(T ) be arbitrary. Then Xn weakly converges
to a tight limit if and only if Xn is asymptotically tight and the marginals

(
Xn(t1), . . . , Xn(tk)

)
converge

weakly to a limit for every finite subset t1, . . . , tk.
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Proof. Forward direction is simple, backwards direction requires more work:

( =⇒ ) Suppose that Xn
L→ X and X is tight. By Lemma 2.1, this means that Xn is asymptotically tight.

Let Tk : L∞(T )→ Rk be the projection onto the coordinates t1, . . . , tK . This is a continuous function so by
continuous mapping theorem we have convergence of the marginals for any finite collection.

( ⇐= ) Suppose that Xn is asymptotically tight and the marginals converge. Then, by Lemma 2.2, Xn is

asymptotically measurable. By Pohorov’s theorem, there is a subsequence Xnk
L→ X for some X. Suppose

Xn

L

6→ X. Then, there is a subsequence Xn′k
that stays away from X (in law). However, the marginals

converge. This means that the marginals of Y are the same as the marginals of X. By Lemma 2.3,

X
L
= Y .

Remark (Intuition). Why is tightness and convergence of marginals enough? From tightness we have that
P (X ∈ K) ≥ 1 − ε for some compact set K. In a metric space, compact means that for every ε > 0 there
are a finite set of points that approximate the whole set within an error of ε. For a finite set of points we
have convergence of marginal distributions by standard central limit theorem.

Showing convergence of marginal distributions is straightforward by CLT. Next, we cover how to show
tightness. Then Theorem 2.5 gives convergence of the entire process.To verify tightness we want a better
description than the definition of asymptotic tightness. Two approaches

1. Finite Approximation → simpler

2. Arzela-Ascoli Theorem → larger interest (asymptotic equicontinuity)

2.2.1 Finite Approximation

The general idea here is that, for any ε > 0, we can partition the index set T (as in `∞(T )) into a finite
number of sets Ti so that the variation in each set is < ε. Formally, for any η > 0,

lim sup
n→∞

P

(
max
i

sup
s,t∈Ti

∣∣Xn(s)−Xn(t)
∣∣ > ε

)
< η.

Remark (Intuition). Why should we expect this to work? Tightness means that the probability measure
concentrates on a compact set. A compact set in `∞(X) is well approximated by a finite number of functions.

Theorem 2.6 (Theorem 1.5.6 VdV&W). A sequence of random maps Xn ∈ `∞(T ) is asymptotically tight if
and only if Xn(t) is asymptotically tight in R for every t and, for all ε, η > 0 there is a partition T = ∪ni=1Ti
such that

lim sup
n→∞

P?
(

max
i

sup
s,t∈Ti

∣∣Xn(s)−Xn(t)
∣∣ > ε

)
< η (FA-1)

Proof. Cover sufficiency. Necessity follows from Theorem 1.5.7 in Van DerVaart and Wellner. Suppose that
(FA-1) holds. Fix ε > 0 and let the partition T =

⋃k
i=1 Ti satisfy (FA-1) for some η > 0. We want to show

that supt
∣∣Xn(t)

∣∣ is asymptotically tight. Then:

lim supP?
(

sup
t∈T

∣∣Xn(t)
∣∣ > M

)
≤ lim supP?

(
sup
t∈T

> M, and (FA-1) holds

)
+ lim supP?

(
(FA-1) doesn’t hold

)
≤ lim supP?

(
max

1≤i≤k

∣∣xn(ti)
∣∣+ ε > M

)
+ η

Where in the last line we use the bounded variation within each set Ti and pick some arbitrary elements
ti ∈ Ti. Now note that each Xn(ti) is asymptotically tight by assumption so that max1≤i≤ki

∣∣Xn(ti)
∣∣ is
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asymptotically tight.1. This means that we can pick M so that

lim supP?
(

sup
t

∣∣Xn(t)
∣∣ > M

)
< η.

or, to put this another way, for every η > 0 we can show that there is an M such that:

lim supP?
(

sup
t

∣∣Xn(t)
∣∣ > M

)
< η.

So we have shown that supt
∣∣Xn(t)

∣∣ is bounded in probability. Since supt
∣∣Xn(t)

∣∣ is a map onto the real line,
bounded in probability coincides with asymptotic tightness (Heine-Borel).

Now we want to construct a candidate compact set K for the process Xn. Fix ζ > 0 and a sequence εn ↓ 0.
First, pick an M such that

lim sup
n→∞

P?
(

sup
t

∣∣Xn(t)
∣∣ > M

)
< ζ.

we know such an M exists by the above argument. For each εm partition T =
⋃K(m)
i=1 Ti such that

lim sup
n→∞

P?
(

sup
1≤i≤K(m)

sup
s,t∈Ti

∣∣Xn(s)−Xn(t)
∣∣ > εm

)
<

ζ

2m
.

For each εm let {z1, . . . , zp(m)} be the set of functions in `∞(T ) that are constant on Ti and only take values
0,±εm,±2εm, . . . ,M . It is only important for now that, for any m, p(m) is finite (though large). Let

Km =

p(m)⋃
i=1

B(zi, εm).

where B(zi, εm) is the closed ball of radius εm around zi. Note that if supt
∣∣Xn(t)

∣∣ ≤M and

sup
1≤i≤k(m)

sup
s,t∈Ti

∣∣Xn(s)−Xn(t)
∣∣ ≤ εm

then Xn ∈ Km. Let K =
⋂∞
m=1Km. Then K is closed and totally bounded. Closure follows because each

Km is closed (finite union of closed sets) and an arbitrary intersection of closed sets is closed (because the
arbitrary union of open sets is open). To see totally bounded fix δ > 0. Then for each εm < δ we have that

Km =
⋃p(m)
i=1 B̄(zi, εm). Since Km ⊃ K these balls cover K.

We now have a candidate K. We now want to show that, for every δ > 0, Kδ ⊃
⋂m
i=1Ki for some m.

Suppose not. Then there is a sequence {zm} with zm 6∈ Kδ and zm ∈
⋂m
i=1Ki for every m.2 This sequence

has a subsequence contained in one of the balls making up K1, this subsequence in one of the balls in K1 has
a further subsequence contained in one of the balls making up K2, that subsequence contains a subsequence
eventually contained in K3, and so on. 3 Consider the “diagonal” sequence formed by taking the first
element of the first subsequence, the second element of the second sequence, and so on. Eventually, this
would be contained in a ball of radius εm for any m.4Because εm ↓ 0 this means the sequence is Cauchy.

1Couple of quick arguments to get this one:

1. If each Xi,n in {Xi,n}Ki=1 is asymptotically tight then the vector
[
X1 . . . XK

]
is asymptotically tight. This is because

the Cartesian product of a finite number of compact sets is compact (with respect to the product topology).

2. If Xn is asymptotically tight and g is a continuous function then g(Xn) is asymptotically tight. This is shown in
Example 2.2 and basically follows from the fact that a continuous function applied to a compact set yields a compact
set. The maximum operator is continuous.

2Pick zm ∈
⋂m
i=1Ki \Kδ

3Why? Each {zm} is in
⋂m
i=1 Ki. Fix some n, then eventually the sequence is contained in

⋂n
i=1 Kn and so is contained in

Kn since Kn ⊃
⋂n
i=1 Kn. This means the sequence {zm} has infinite members in Kn. Kn is the union of a finite number of

sets, so one of these sets must contain infinite members
4Key here is the boundedness of the functions we are considering.
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Since `∞(T ) is a complete (Banach) space this sequence converges and must converge to an element in K.
This contradicts the fact that d(zm,K) ≥ δ for every m.

Finally, combining our previous results, we want to show that lim inf P?
(
Xn ∈ Kδ

)
≥ 1−2ζ. for every δ > 0.

This is equivalent to saying that lim supP?
(
Xn 6∈ Kδ

)
< 2δ. Recall that

sup
t

∣∣Xn(t)
∣∣ ≤M and sup

i
sup
s,t∈Ti

∣∣Xn(s)−Xn(t)
∣∣ ≤ εm =⇒ Xn ∈ Km.

Then, to show asymptotic tightness:

lim sup
n→∞

P?
Xn 6∈

n⋃
i=1

Ki

 ≤ lim supP?
Xn 6∈

m⋃
i=1

Ki; sup
t

∣∣Xn(t)
∣∣ ≤M

+ lim supP?
(

sup
t

∣∣Xn(t)
∣∣ > M

)
︸ ︷︷ ︸

<ζ

≤ lim supP?
(

sup
i

sup
s,t∈Ti

∣∣Xn(s)−Xn(t)
∣∣ > εm for some m

)
+ ζ

≤
m∑
j=1

lim supP?
(

sup
i

sup
s,t∈Ti

∣∣Xn(s)−Xn(t)
∣∣ > εj

)
+ ζ

≤
m∑
j=1

ζ

2j
+ ζ

< 2ζ

Proof is involved but useful as it shows the equivalence between asymptotic tightness and a finite approx-
imation notion. The proof also builds some intuition for why tightness is important, at each step we are
essentially showing that the whole behavior of the set is well describes (up to a tolerance of size ε) by a finite
set of marginals. Weak convergence of the marginals is much easier to show.

This being said, the condition in Theorem 2.6 is hard to check. In particular, there is no guidance given on
how to select the partition {Ti}mi=1. The next way to characterize tightness builds on asymptotic equicontiuity.
The idea is the correct way to pick the partition is linked to some form of continuity: pick small Ti so that
Xn does not move much on Ti.

Definition 2.7 (Asymptotic ρ-equicontinuity in probability). Suppose ρ is a semimetric on T . Then a
sequence of maps Xn : Ωn → `∞(T ) is asymptotically ρ-equicontinuous if for every ε, η > 0 there exists a
δ > 0 such that

lim sup
n→∞

P?
(

sup
d(s,t)<δ

∣∣Xn(s)−Xn(t) > ε
∣∣) < η.

Remark. This is basically setting Ti = {(s, t) : p(s, t) < δ}

Example. Let Xn(t) = 1√
n

∑n
i=1

[
1{Xi ≤ t} − P(X ≤ t)

]
. Then

∣∣Xn(t)−Xn(t′)
∣∣ ≈ 0 for all |t − t′| < δ.

Note that here, for every n, Xn(t) is still a discontinuous function of t, it’s just that the jumps get closer
together or smaller.

Example. Suppose that γ = g(X,β0)+ε with E[ε|X] = 0. By the vector LLN, we can say that β̂−β0 →p 0.

In contrast, asymptotic equicontinuity will allow to say that:

β̂ →p β0 =⇒

∣∣∣∣∣∣ 1√
n

n∑
i=1

{(
g(xi, β̂)− E[g(x, β̂)]

)
−
(
g(xi, β0)− E

[
g(x, β0)

])}∣∣∣∣∣∣ = op(1).

which is a more powerful result.
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Theorem 2.7 (Theorem 1.5.7 Vdv&W). A sequence of random maps, Xn : Ωn → `∞(T ) is asymptotically
tight if and only if Xn(t) is asymptotically tight in R for each t and there exists a semimetric ρ on T such
that (T, ρ) is totally bounded and Xn is asymptotically uniformly ρ-equicontinuous.

Proof. First prove sufficiency then necessity:

(⇐= ) Fix ε, η > 0. Then, there is a δ > 0 such that

lim supP?
(

sup
ρ(s,t)<δ

∣∣Xn(s)−Xn(t)
∣∣ > ε

)
< η.

Since T is totally bounded, then there are finitely many balls of radius δ that cover T , B1, . . . , BK(δ). Make
these balls disjoint by taking successive “set-minuses” and then we have a partition of T . Then

lim supP?
(

max
i

sup
s,t∈Ti

∣∣Xn(s)−Xn(t)
∣∣ > ε

)
≤ lim supP?

(
sup

ρ(s,t)<δ

∣∣Xn(s)−Xn(t)
∣∣ > ε

)
< η

and we can apply the results of Theorem 2.6.

( =⇒ ) If Xn is asymptotically tight, then g(Xn) is asymptotically tight for each continuous function g. Let
K1 ⊂ K2 ⊂ . . . be compact sets with:

lim inf P? (Xn ∈ Kε
m) ≥ 1− 1/m.5

For each m define a semimetric ρm on T by:

ρm(s, t) = sup
z∈Km

∣∣z(s)− z(t)∣∣ .
Then (T, ρm) is totally bounded. How? Cover Km by finitely many balls of arbitrarily small radius η
centered at z1, . . . , zk.6 Partition Rk into cubes of edge η and for every cube pick at most one t ∈ T such
that

(
z1(1), . . . , zk(t)

)
is in the cube. Since z1, . . . , zk are uniformly bounded,7 this gives finitely many points

t1, . . . , tp. Now, the balls {t : pm(t, ti) < 3η} cover T : t is in the ball around ti for which
(
z1(t), . . . , zk(t)

)
and

(
z1(ti), . . . , zk(ti)

)
fall in the same cube. This in turn follows from the fact that ρm(t, ti) can be bounded

by 2 supz∈Km infi ‖z − zi‖T + supj
∣∣zj(ti)− zj(t)∣∣. 8

5We can choose nested compact sets with this property because the union of a finite number of compact sets is compact and
the probability functional is increasing with respect to the subset ordering.

6This is possible by compactness. Cover Km by balls of radius η and then take a finite subcover.
7Recall that each zi is in `∞(T ) which is the space of all bounded functions from T → R. A finite collection of bounded

functions is uniformly bounded
8Recall that ‖f‖T = supt∈T |f(t)|,ρm(t, ti) = supz∈Km

∣∣z(t)− z(ti)∣∣, z1, . . . , zK are the points (bounded functions of T )

around which balls of radius η cover Km, and t1, . . . , tp are points of T such that the vector valued function
(
z1(·), . . . , zk(·)

)
takes values only in cubes of edge length η of which one of t1, . . . , tp is an element. Then, applying the triangle inequality and
the above statements:

ρm(t, ti) = sup
z∈Km

∣∣z(t)− z(ti)∣∣
≤ sup
z∈Km

∣∣z(t)− zj(ti)∣∣+
∣∣zj(ti)− z(t)∣∣

≤ sup
z∈Km

∣∣z(t)− zj(ti)∣∣+
∣∣zj(ti)− zj(t)∣∣+

∣∣zj(t)− z(t)∣∣
≤ 2 sup

z∈Km

∥∥z − zj∥∥T +
∣∣zj(ti)− zj(t)∣∣

Since this holds for all j, we obtain

ρm(t, ti) ≤ 2 sup
z∈Km

inf
j

∥∥z − zj∥∥T + sup
j

∣∣zj(t)− zj(ti)∣∣ .
For any t such that

(
z1(t), . . . , zk(t)

)
falls in the same cube as

(
z1(ti), . . . , zk(ti)

)
, the first quantity is (strictly) bounded by 2η

by the definition of z1, . . . , zk whereas the second quantity is bounded by η because t falls in the same cube as ti. Now, since,
for each t ∈ T ,

(
z1(t), . . . , zk(t)

)
∈ T must fall in the same cube as

(
z1(ti), . . . , zk(ti)

)
for some i ∈ {1, . . . , p} we have that

t ∈ {t̃ : ρm(ti, t̃) < 3η} for some i ∈ {1, . . . , p}. Since η is arbitrary, this shows that (T, ρm) is totally bounded.



Page 16

Now set

ρ(s, t) =

∞∑
m=1

2−m
(
ρm(s, t) ∧ 1

)
.

Fix some η > 0. Take a natural number m with 2−m < η. Cover T with finitely many ρm-balls of radius
m.9. Let t1, . . . , tp be their centers, Since ρ1 ≤ ρ2 ≤ . . .,10 there is for every t a ti with

ρ(t, ti) ≤
m∑
k=1

2−kρk(t, ti) + 2−m < 2η.11

So (T, ρ) is totally bounded as well. It is clear from definitions that
∣∣z(s)− z(t)∣∣ ≤ ρm(s, t) for every

z ∈ Km and that
(
ρm(s, t) ∧ 1

)
≤ 2mρ(s, t).12 Further, if ‖z0 − z‖T < ε for z ∈ Km, then |z0(s) − z0(t)| <

2ε+ |z(s)− z(t)| for any pair s, t. 13 This gives us that

Kε
m ⊂

{
z : sup

ρ(s,t)<2−mε

∣∣z(s)− z(t)∣∣ ≤ 3ε

}
.

The system of implications to get this is: if z ∈ Km and ε < 1 then ρ(s, t) < 2−mε =⇒ ρm(s, t) ≤ ε =⇒∣∣z(s)− z(t)∣∣ ≤ ε. That this holds for all z ∈ Km gives that for z ∈ Kε
m, ρ(s, t) < 2−mε =⇒

∣∣z(s)− z(t)∣∣ ≤
3ε. Taking ε ≤ 1 is without loss of generality. To finish not that this gives us that, for given ε and m and
for δ < 2−mε

lim inf P?

(
sup

ρ(s,t)<δ

∣∣Xn(s)−Xn(t)
∣∣ < 3ε

)
≥ 1− 1

m
.

This shows the backwards direction of Theorem 2.6 as well. As a note, this whole argument can be used
with nets instead of sequences.

Remark. Important not to forget the totally bounded part of the theorem. For example, in the example
of the empirical CDF case, we need to show that R is totally bounded. The good news is we have choice of
semi-metric.

Remark (Connection to Arzela-Ascoli). Arzela-Ascoli: Let T be a set with metric ρ that is compact. Tet
C(T ) be the set of all real valued continuous functions on T . Then A ⊂ C(T ) is compact under |·|∞ if and
only if it is equicontinuous and bounded.

We can think of Theorem 2.7 as a stochastic version of this. That is for

lim inf P?

(
sup

p(s,t)<δ

∣∣Xn(s)−Xn(t)
∣∣ ≤ ε) ≥ 1− η.

The set of functions satisfying this condition is equicontinuous. So then, if Xn falls here it is in a compact
set by Arzela-Ascoli (Theorem 1.3). Showing this is a focus later.

9This is possible because (T, ρm) is totally bounded by the above argument
10Because K1 ⊆ K2 ⊆ K3 . . .
11If t is distance at most η from ti under ρm, it is also distance at most η from ti under ρk for k ≤ m
12In the definition of ρ multiply left side and right side by 2m. A semimetric is always (weakly) positive.
13Same triangle inequality decomposition as above:∣∣z0(s)− z0(t)

∣∣ ≤ ∣∣z0(s)− z(s)
∣∣+
∣∣z(s)− z0(t)

∣∣
≤
∣∣z0(s)− z(z)

∣∣+
∣∣z(s)− z(t)∣∣+

∣∣z(t)− z0(t)
∣∣

≤ 2 ‖z0 − z‖T +
∣∣z(s)− z(t)∣∣
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3 Empirical Processes

These notes follow Section 2 in VdV&W. So far, we have discussed theory for Xn
L→ X where both Xn and

X are random elements in `∞(T ). The classic example that we have kept in mind is convergence of the
empirical CDF process, Xn(t) = 1√

n

∑n
i=1

(
1{Xi ≤ t} − P(X ≤ t)

)
. In this next section we will build on the

theory developed to show the convergence of some empirical processes on `∞.

Definition 3.1 (Empirical Measure). For a random sample {Xi}ni=1, the empirical measure Pn is the measure
constructed from the sample (putting mass 1/n at each Xi). That is, for any set C:

Pn(C) :=
1

n

n∑
i=1

1{Xi ∈ C}.

We can also write this in terms of the degenerate measures on each Xi:

Pn :=
1

n

n∑
i=1

δXi .

Definition 3.2 (Empirical Process). For a random sample {Xi}ni=1 drawn from common distribution P ,
the empirical process Gn is the scaled and demeaned measure on X given by:

Gn(C) :=
1√
n

n∑
i=1

(
1{Xi ∈ C} − P (Xi ∈ C)

)
.

This is often related to the empirical measure in Definition 3.1 by

Gn =
√
n (Pn − P ) .

Or written in terms of the degenerate measures on each Xi:

Gn =
1√
n

n∑
i=1

(δXi − P ) .

Remark (Notation). We will make the following notations to save space later on. For a measure Q on a
space let Qf = EQ[f(X)]. E.j: Pnf = En[f(X)] = 1

n

∑n
i=1 f(Xi) and Gnf = 1√

n

∑n
i=1

(
f(Xi)− Pf

)
.

With this notation:

Pnf
a.s−→ Pf is just saying

1

n

n∑
i=1

f(Xi)
a.s−→ E

[
f(X)

]
Gnf

L−→ N(0, σ2) is just saying
1√
n

n∑
i=1

(
f(Xi)− E

[
f(X)

]) L−→ N(0, σ2)

By LLN and CLT we have that for any function f , Pnf →a.s Pf and Gnf
L→ N

(
0, P (f − Pf)

2
)

Example 3.1 (Classes of Functions). LLN and CLT establish the behavior of the empirical measure Pnf
and the empirical process Gnf for a fixed function f (which could even be vector valued). However, we often
want to study the behavior of the empirical measure of empirical process over a class of functions F . In this
case we can think of Gn(F) or Pn(F) as random maps onto `∞(F). The marginal, Gnf or Pnf , is then the
behavior of the empirical measure/process for a single function f ∈ F .

Mapping this back to the empirical CDF example of before let F =
{
ft : R→ R | ft(x) = 1{x ≤ t}, t ∈ T

}
.

Before, we considered convergence of the whole CDF through the map Xn : Ωn → `∞(T ) with the marginals
Xn(t) = 1

n

∑n
i=1 1{Xi ≤ t}. With these new definitions/notations, we equivalently consider convergence of

the entire CDF through the map Pn(F) : Ωn → `∞(F) with marginals Pnft = 1
n

∑n
i=1 1{Xi ≤ t}.
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This sort of notation/generality is useful as we can consider the behavior of the empirical measure or empirical
process over a larger class of functions. For example, if we wanted to study an entire semiparametric model
we may consider the behavior of Gn(F) where

F =
{
f(x; θ) for some θ ∈ Θ

}
.

Or, if we wanted to consider convergence after imposing some shape restriction, we may take

F =
{
f : X → R | f is monotonic

}
.

Remark (Notation). Sometimes we use  to denote weak convergence/convergence in law instead of
L→.

Remark (Definition of `∞ Space). It is useful to review the `∞(T ) space for an arbitrary index space T .
Define:

`∞(T ) =

{
f : T → R : sup

t∈T

∣∣f(t)
∣∣ <∞} (3.1)

and equip this space with the sup-norm, ‖f‖T = supt∈T
∣∣f(t)

∣∣. Note that, for any F , Gn(F) can be viewed
as a random map into `∞(F) for each n. Boundedness comes from the finiteness of the sample. We will
sometimes make the notation ‖Q‖F = supf∈F |Qf | for a given measure Q.

Now make some important definitions and then talk about how they relate to what we want to show.

Definition 3.3 (Glivenko-Cantelli Class). A class of functions, F , for which

‖Pn − P‖F →p 0 (3.2)

is called a Glivenko-Cantelli class, or a P -Glivenko-Cantelli class to emphasize the dependence on the un-
derlying measure P from which the sample is drawn.

Definition 3.4 (Donsker Class). A class of functions, F , for which

Gn(F)
L−→ G(F) (3.3)

where G is a tight, Borel measurable element in `∞(F), is called a Donsker class, or P -Donsker class to
emphasize the dependence on the underlying measure P from which the sample is drawn.

A Donsker class is trivially Glivenko-Cantelli.

Example 3.2 (Some Donsker Classes). Some examples of function classes:

1. If F consists of a single function with finite variance then F is Donsker by the Central Limit Theorem.

That is Gn
L→ G where G is a tight element on `∞(F) = `∞({f})

2. The class of functions F =
{
f(x) = x′β : β ∈ B

}
is Donsker if B is bounded.

3. The class of monotonic densities on [0, 1] is Donsker.

4. The class of square integrable functions is not Donsker (too large).

How do we know if GN  G where G is a tight, Borel measurable element on `∞(F)? By Theo-
rem 2.5 we know that Xn weakly converges if and only if Xn is asymptotically tight and the marginals(
Xn(t1), . . . , Xn(tk)

)
converge weakly to a limit for every finite subset. Moreover, by Lemma 2.2 asymptotic

measurability of the process is equivalent to asymptotic measurability of the marginals. By the Central
Limit Theorem, we typically have weak convergence and asymptotic measurability of the marginals, what
remains is to show asymptotic tightness.

Theorem 2.7 characterizes asymptotic tightness in terms of ρ-equicontinuity. Much of the work in showing
tightness will be to find some semimetric ρ on F such that for any ε, η > 0 there is a δ > 0 such that

lim sup
n→∞

P?
(

sup
ρ(f,g)<δ

∣∣Gn(f)−Gn(g)
∣∣ > ε

)
< η. (3.4)
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A typical approach will be to let Fδ =
{
f, g ∈ F , ρ(f, g) < δ

}
. If we can show that, for some M(δ) that goes

to 0 as δ ↓ 0

E
[
‖Gn‖Fδ

]
= E

[
sup

ρ(f,g)<δ

∣∣Gn(f)−Gn(g)
∣∣]

= E

 sup
ρ(f,g)<δ

∣∣∣∣∣∣ 1√
n

n∑
i=1

{
f(Xi)− E[f(Xi)]− g(Xi) + E[g(Xi)]

}∣∣∣∣∣∣


≤M(δ)

Then, we would get the result in (3.4) by Markov’s inequality. This type of result, that E
[
‖Gn‖Fδ

]
≤M(δ)

is called a maximal inequality and is immensely useful.

Obtaining such a maximal inequality/establishing asymptotic tightness is dependent on the space not being
“too large” (loosely speaking). In the example above, the class F = {f(x) = x′β | β ∈ B} is Donsker so long
as B is bounded. To illustrate, see in the single dimensional case that

sup
b∈B

∣∣∣∣∣∣ 1√
n

n∑
i=1

xib− E[xb]

∣∣∣∣∣∣ = sup
b∈B

∣∣∣∣∣∣ 1√
n

n∑
i=1

xi − E[x]

∣∣∣∣∣∣ |b|.
If we don’t impose |b| ≤M then this will blow up to +∞ with probability 1, whereas if we do we have that
this is Op(1). For more involved function classes, we want a way of measuring whether F is large or not.
This motivates the definitions of bracketing and covering numbers below.

Definition 3.5 (Covering Number). The covering number, N
(
ε,F , ‖ · ‖

)
of a class of functions F is the

smallest number of balls of radius ε under ‖ · ‖ needed to cover the set F .

Definition 3.6 (Bracketing Number). Given two functions, ` and u, the bracket [`, u] is the set of all
functions f with `(x) ≤ f ≤ u(x) for all x. An ε-bracket is a bracket [`, u] with ‖u− `‖ < ε. The bracketing
number N[ ]

(
ε,F , ‖ · ‖

)
is the minimum number of ε-brackets needed to cover F .

Example 3.3 (Covering Number). Let A = [0, 1] and ‖ · ‖ be the standard Euclidean norm1.

1. If ε ≥ 1/2, then a ball centered at 1/2 covers the entire interval so N
(
ε, A, |·|

)
= 1.

2. If ε < 1/2, then we need d 1
2εe balls to cover A.

Note that (i) in this example the covering number coincides with the bracketing number (ii) in general
the balls needed to cover F need not be centered at points in F (iii) (in general) as ε ↓ 0 we have that
N (ε,F , ‖ · ‖) ↑ ∞.

Example 3.4 (Bracketing Number). Suppose x takes values in [0, 1] and let F =
{
f(x) = xβ, for β ∈ [0, 1]

}
.

Then, if βi < βi+1, [xβi, xβi+1] forms a bracket containing all functions f(x) = xβ with βi ≤ β ≤ βi+1.
Further note that

‖xβi − xβi+1‖ = sup
x∈[0,1]

|x||βi − βi+1| = |βi − βi+1|.

For any ε > 0 break up [0, 1] into [0, ε, 2ε, . . . ] and take βi = (i − 1)ε to get brackets [xβi, xβi+1] of size ε.
We need d1/εe of these brackets to cover F so that N[]

(
ε,F , ‖ · ‖∞

)
≤ d1/εe < 2/ε.

Remark (Bracketing vs. Covering Numbers). In general we have that N (ε,F , ‖ · ‖) ≤ N[](2ε,F , ‖ · ‖), but
no opposite relationship. This shows that bracketing numbers are in general stronger than covering numbers
and give you better control over the class of functions.

We will see conditions for Glivenko-Cantelli and Donsker properties under both, but in general proving
Glivenko-Cantelli involves using bracketing numbers whereas proving Donsker involves using covering num-
bers.

1If we want to view this as a function class we can equivalently say A is the set of constant functions taking values in the
interval [0, 1] and consider any Lp norm on this class
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In general, finding the covering/bracketing number will be difficult but we will learn some tips. Verifying
that a set is Donsker will often come down to showing that the covering/bracketing number does not go to
infinity “too fast.”

3.1 Maximal Inequalities for Finite Classes

For an arbitrary set of functions, F , want to develop an inequality that looks something like:

E

sup
f∈F

∣∣∣∣∣∣ 1√
n

n∑
i=1

(
f(xi)− E[f(x)]

)∣∣∣∣∣∣
 ≤ size (F) .

Or, rewriting in the notation of above:

E

[
sup
f∈F
|Gnf |

]
≤ size (F) .

This sort of inequality is useful as it can be used to show the uniform law of large numbers:

E

[
sup
f∈F

∣∣(Pn − P ) f
∣∣] ≤ 1√

n
size (F) + Markov’s Inequality.

Or show asymptotic tightness through stochastic equicontinuity:

E

[
sup

ρ(f,g)<δ

∣∣Gn (f − g)
∣∣] ≤ size (Fδ) + Theorem 2.7.

However, often we may need to change the exact application of these maximal inequalities. We will work
out where these come from as we go along. The inequality will be presented for general stochastic processes
(for our purposes, a stochastic process is a random map into `∞(T )). To build the maximal inequality, we
will need to define a new norm which generalizes the Lp norms. We do so quickly below.

3.1.1 Orlicz Norm

Definition 3.7 (Orlicz Norm). Let ψ be a non-decreasing, convex function with ψ(0) = 0 and X a random
variable. Then, the Orlicz norm ‖X‖ψ is defined as

‖X‖ψ = inf

{
C > 0 : Eψ

(
|X|
C

)
≤ 1

}
(3.5)

Where here the infimum over the empty set is taken to be +∞.

Remark (Orlicz norms generalize Lp). Note that for any p ≥ 1 the function f(x) = xp is convex and
non-decreasing. With this in mind we can view the Orlicz norms as a generalization of the Lp norms to
general convex and non-decreasing functions functions.

Remark (Orlicz p-norms). Of particular interest will be the Orlicz norms generated by the functions

ψp = ex
p

− 1.

for p ≥ 1. The Orlicz norm in this case is often denoted ‖·‖ψp . These norms give more weight to the tails of
X than the standard Lp norms. It is not the case that these norms are uniformly larger than all Lp norms,
however, we do have the inequalities

‖X‖ψp ≤ ‖X‖ψq (log 2)
p/q

‖X‖p ≤ p! ‖X‖ψ1
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Remark (Orlicz Norms and Markov’s Inequality). Any Orlicz norm can be used to bound tail probabilities.
Using Markov’s inequality:

P
(
|X| > x

)
≤ P

(
ψ
(
|X|/ ‖X‖ψ

)
≥ ψ

(
x/ ‖X‖ψ

))
≤ 1

ψ
(
x/‖X‖ψ

) .
For ψp(x) = ex

p−1 this leads to tail estimates like exp (−Cxp) for any random variable with a finite ψp-norm.
Conversely, an exponential tail bound of this type shows that ‖X‖ψp is finite.

Lemma 3.1 (Lemma 2.2.1 VdV&W). Let X be a random variable with P
(
|X| > x

)
≤ Ke−Dxp for every x

and some (fixed) constants K and D and for some p ≥ 1. Then, the Orlicz norm of X satisfies

‖X‖ψp ≤
(
(1 +K)/D

)1/p
In particular, this will mean that for C =

(
(1 +K)/D

)1/p
E

[
ψ

(
|X|
C

)]
≤ 1.

Proof. By Fundamental Theorem of Calculus and Tonelli’s Theorem, for any constant B:

E
[
eB|X|

p

− 1
]

= E
∫ |X|p

0

BeBs ds =

∫ ∞
0

P
(
|X > s1/p

)
BeBs ds

Now use the inequality on the tails of |X|, plug in B = C−p = D/(1 +K), and see that the final equality is
bounded by 1.

Using the fact that max |Xi|P ≤
∑
|Xi|p we obtain for the Lp norms, the result that∥∥∥∥ max

1≤i≤m
Xj

∥∥∥∥
p

=

(
E max

1≤i≤m
|Xi|p

)1/p

≤ m1/p max
1≤i≤m

‖Xi‖p .

We can generalize this for the Orlicz norm.

Lemma 3.2 (Lemma 2.2.2 VdV&W). Let ψ be a convex, non-decreasing, nonzero function with ψ(0) = 0
and lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) <∞ for some constant c. Then, for any random variables X1, . . . , Xm,∥∥∥∥ max

1≤i≤m
Xi

∥∥∥∥
ψ

≤ Kψ−1(m) max
1≤i≤m

‖Xi‖ψ (3.6)

For a constant K depending only on ψ.

Proof. Without loss of generality, assume that ψ(x)ψ(y) ≤ ψ(cxy) for all x, y ≥ 1 and that ψ(1) ≤ 1/2.1 In
this case, ψ(x/y) ≤ ψ(cx)/ψ(y) for all x ≥ y ≥ 1.2 Thus, for y ≥ 1 and any D;

max
1≤i≤m

ψ

(
|Xi|
Dy

)
≤ max

1≤i≤m

[
ψ(c|Xi|/D)

ψ(y)
+ ψ

(
|Xi|
Dy

)
1

{
|Xi|
Dy

< 1

}]

≤
m∑
i=1

ψ
(
c|Xi|D

)
ψ(y)

+ ψ(1)

1If this is not the case there are constants σ ≤ 1 and τ > 0 such that φ(x) = σψ(τx) satisfies these conditions. Apply the
inequality to φ and note that

‖X‖ψ ≤ ‖X‖φ/(στ) ≤ ‖X‖ψ/σ.

2x/y ≥ 1 so ψ(x/y)ψ(y) ≤ ψ
(
c(x/y)y

)
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Let D = cmax1≤i≤m ‖Xi‖ψ, and take expectations to get:

Eψ
(

max |Xi|
Dy

)
≤ m

ψ(y)
+ ψ(1).

When ψ(1) ≤ 1/2 take y = ψ−1(2m). Then:∥∥∥∥ max
1≤i≤m

|Xi|
∥∥∥∥
ψ

≤ ψ−1(2m)c max
1≤i≤m

‖Xi‖ψ .

By the convexity of ψ and the fact that ψ(0) = 0, it follows that ψ−1(2m) ≤ 2ψ−1(m). This gives the
result.

To review, we have established the following inequalities above:

1. For maximums of a finite number of random variables

E
[

max
1≤i≤m

|Xi|
]
≤ m max

1≤i≤m
E
[
|Xi|

]
.

2. Then, generalized this to the Lp norms∥∥∥∥ max
1≤i≤m

|Xi|
∥∥∥∥
Lp

≤ m1/p max
1≤i≤m

‖Xi‖Lp .

3. Then, generalized this using the Orlicz norm (Definition 3.7)∥∥∥∥ max
1≤i≤m

|Xi|
∥∥∥∥
ψ

≤ Kψ−1(m) max
1≤i≤m

‖Xi‖ψ .

In particular, taking ψ(a) = ea
2 − 1, we have that E

[
max1≤i≤m |Xi|

]
≤ C

√
log(m+ 1) for any C such

that max1≤i≤m E
[
ψ
(
|Xi|
C

)]
≤ 1. Lemma 3.1 gives a condition for the existence of such a C.

3.2 Chaining and Inequalities for Infinite Classes

So far, we have developed inequalities that deal with finite number of random variables. These inequalities
are useful for showing Donsker/Glivenko-Cantelli property for finite classes of functions, |F| < ∞, just set
Xi = Gnfi. However, we often want to show uniform convergence for (uncountably) infinite classes of sets,
|F| = |Q| or |F| = |R|. To do this, we will use a technique called chaining.

Roughly speaking, this will work whenever our class of functions F is “separable”, with respect to the
empirical process Gn (or empirical measure Pn). This means there is a countable subset F̃ of F such that
supF |Gn(f)| = supF̃ |Gn(f)|. What does this buy us? If F̃0 ⊂ F̃1 ⊂ F̃2 · · · ⊂ F̃ is an infinite sequence of

sets whose union is F̃ and where each F̃i is finite, then:

lim
k→∞

sup
F̃k
|Gn(f)| a.s= sup

F̃
|Gn(f)| monotone convergence

=⇒ lim
k→∞

E

[
sup
F̃k
|Gn(f)|

]
= E

[
sup
F̃
|Gn(f)|

]
.

and by separability, the last expectation is equal to the expectation of the supremum over the whole class
F . To make this work, we want to make sure that we can apply the inequalities that we developed in the
past section. Specifically, we want to make sure that the conditions of Lemma 3.1 hold. To do so, make a
definition.
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Definition 3.8 (Subgaussian Process). Let G be a stochastic process on a space F equipped with a metric
d(·, ·). Then G is subgaussian if

P
(∣∣G(f)−G(g)

∣∣ > x
)
≤ 2e−1/2x2/d2(f,g) (3.7)

for all f, g ∈ F and any x ≥ 0.

Also define a separable function as an analytic concept and then extend this to the case of stochastic
processes.

Definition 3.9 (Separable Function). A function f : A→ B from a topological space A into a topological
space B is separable if there is a countable, dense, subset S ⊂ A such that for any closed F ⊂ B and any
open I ⊂ A, if f(t) ∈ F for all t ∈ F ∩S then f(t) ∈ F for all t ∈ I. This is often denoted as an S-separable
function to emphasize the dependence on the countable, dense subset S.

Lemma 3.3 (Continuity and Separability). A continuous function f : X → Y from a separable space X
onto Y is separable.

Definition 3.10 (Separable Process; Shalizi 2007). A stochastic process on a topological space F , G(·, ω) :
Ω→ `∞(F), is separable if there is a countable, dense, subset of F , F̃ , and a measure zero set N such that
for all ω 6∈ N , G(·, ω) is F̃-separable.1

Separability can be roughly interpreted as ensuring that the behavior of the function (and therefore the
stochastic process) can be well described by its behavior on countable subset. This ensures some of the

properties that we’ve seen above, namely that supf∈F̃ |G(f)| a.s= supf∈F |G(f)|. We are now ready for the
main theorem of this subsection, the proof of which will rely on the chaining argument roughly discussed
above.

Theorem 3.1 (Theorem 2.2.4 VdV&W). Let G be a separable subgaussian process on a space F equipped
with a metric d(·, ·) and let diam(F) = supf,g∈F d(f, g). Then

E sup
f,g∈F

∣∣G(f)−G(g)
∣∣ ≤ K ∫ diam(F)

0

√
logN (ε,F , d) dε (3.8)

E sup
f∈F

∣∣G(f)
∣∣ ≤ E

∣∣G(f0)
∣∣+K

∫ diam(F)

0

√
logN (ε,F , d) dε, ∀f0 ∈ F (3.9)

Proof. Proof proceeds in steps. Let M = diam(F) = supf,g∈F d(f, g). For any f0, f ∈ F we have that

d(f0, g) ≤ M . First step will be to build a “chain” to almost any point in F . Further, let F̃ be the dense
subset as described in Definitions 3.9 and 3.10.

Step 1: Building a Chain. Pick any f0 ∈ F̃ and let F̃0 = {f0}. Build nesting sets, F0 ⊂ F̃1 ⊂ F̃2 ⊂ · · · ⊂ F̃ ,
such that for each k ∈ N F̃k = {f1, . . . , fm(k)} is a maximal collection of points such that d(fk, gk) > M

2K
for

any fk, gk ∈ Fk. By definition of the packing numbers we know that N
(

M
2k+1 ,F , d

)
balls cover F . Putting

a point at the center of each of these balls creates points that are at least distance M
2k

from each other.

Similarly, if we could fit more points at least distance M
2k

distance away from each other than we could pack

more balls of radius M
2k+1 into F by centering a ball at each point. So, |F̃K | ≤ N

(
M

2k+1 ,F , d
)

(Inequality

comes because each F̃k has to contain all previous sets).

Finally, link each point fk ∈ F̃k to a unique point fk−1 ∈ F̃k−1 such that d(fk, fk−1) ≤ M
2k−1 .2

1Note that this requires a topology on F . In the applications we will be talking about F will be equipped with a metric d.
This will generate a topology.

2I found it helpful to remember here that F̃k−1 ⊂ F̃k. If no such fk−1 exists we could add fk to F̃k−1, a contradiction. If

fk ∈ F̃k−1 we can link it to itself.
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Step 2: Use the chain to build a bound. Using these links, for any fk, gk ∈ F̃k we can build a chain back to
f0: ∣∣G(fk)−G(gk)

∣∣ =
∣∣∣(G(fk)−G(f0)

)
−
(
G(gk)−G(f0)

)∣∣∣
=

∣∣∣∣∣∣
k∑
j=0

(
G(fi)−G(fi−1)

)
−

k∑
j=0

(
G(gi)−G(gi−1)

)∣∣∣∣∣∣
By the triangle inequality:

E

[
max

gk,fk∈F̃k

∣∣G(fk)−G(gk)
∣∣] ≤ 2

K∑
j=0

E

[
max
si∈F̃i

∣∣G(si)−G(si−1)
∣∣] (P-1)

With this setup, we can use the maximal inequalities developed above, applying them to the finite sets F̃k.

Step 3: Try to control the jumps. Recall that there are at most N
(

M
2k+1 ,F , d

)
points in Fk and that

d(sk, sk−1) ≤ M
2k−1 . By our maximal inequality in Lemma 3.2, taking ψ(a) = ea

2 − 1 we have that

E

[
max
sj∈F̃j

∣∣G(sj)−G(sj−1)
∣∣] ≤ Cj

√√√√log

(
N
(
M

2j+1
,F , d

)
+ 1

)
.

For any constant Cj such that

E

exp

(G(sj)−G(sj−1)
)2

c2j

− 1

 ≤ 1, ∀sj ∈ F̃j .

Since G is subgaussian we know that P
(∣∣G(f)−G(g)

∣∣ > x
)
≤ 2e−

1
2x

2/d2(f,g). By construction, we know

that d(sj , sj−1) ≤ M
2j−1 ,∀sj ∈ F̃j . So

P
(∣∣G(sj)−G(sj−1)

∣∣ > x
)
≤ 2e

− 1
2

x2

dM/2j−1e2 .

By Lemma 3.1 we can take Cj =
√

3M
2j−1 and combine with the other results in this section to get

E

[
max
sj∈F̃j

∣∣G(sj)−G(sj−1)
∣∣] ≤ √3M

2j−1

√√√√log

(
N
(
M

2j+1
,F , d

)
+ 1

)
(P-2)

Step 4: Combine Results of Previous Steps. Combine the inequalities from (P-1) and (P-2) to get

E

[
max

gk,fk∈F̃k

∣∣G(fg)−G(gk)
∣∣] ≤ √12M

k∑
j=0

1

2j−1

√√√√log

(
N
(
M

2j+1
,F , d

)
+ 1

)

With some complex rearranging of squares, we can bound the sum in the display by it’s integral up to a
constant scale, dropping the added 1 in the log in the process.3 That is, we ultimately obtain for some
constant K:

E

[
max

gk,fk∈F̃k

∣∣G(fg)−G(gk)
∣∣] ≤ K ∫ M

0

√
log
(
N (ε,F , d)

)
dε (P-3)

3Here we use the fact that log(1 +m) ≤ 2 log(m) for m ≥ 2
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Step 5: Conclude by Separability.
{
F̃k
}∞
k=1

is an increasing sequence of sets that approaches F̃ and note

that the bound in (P-3) does not depend on (little) k. So, invoking monotone convergence and separability
of G:

E

[
sup
f,g∈F

∣∣G(f)−G(g)
∣∣] = E

[
sup
f,g∈F̃

∣∣G(f)−G(g)
∣∣]

= lim
k→∞

E

[
max
f,g∈F̃

∣∣G(f)−G(g)
∣∣]

≤ K
∫ M

0

√
logN (ε,F , d) dε

This is the inequality in equation (3.8). To get equation (3.9) fix any f0 and apply triangle inequality.

Remark (Comments on Theorem 3.1). Theorem 3.1 is an involved result. Some remarks below.

1. We have shown that if Gn is a separable subgaussian process then

E

[
sup
f,g∈F

∣∣Gn(f)−Gn(g)
∣∣] ≤ K ∫ diam(F)

0

√
logN (ε,F , d) dε.

Note that the right hand side does not depend on Gn at all! Only on the “size” of F .

2. So, suppose we want to show that Gn is an asymptotically tight process on F . By Theorem 2.7 it is
sufficient (and necessary) to show that for every ε, η > 0 there is a δ > 0 such that:

lim sup
n→∞

P

(
sup

ρ(f,g)≤δ

∣∣Gn(f)−Gn(g)
∣∣ > ε

)
< η.

Let Fδ =
{
s = f − g : f, g ∈ F and ρ(f, g) ≤ δ

}
. The above can be restated as showing that ∃δ > 0

such that:

lim sup
n→∞

P

(
sup
s∈Fδ

∣∣Gn(s)
∣∣ > ε

)
< η.

By Markov’s inequality we can bound the probability in the above display by

1

ε
E

[
sup
s∈Fδ

∣∣Gn(s)
∣∣] ≤ K

ε

∫ δ

0

√
logN (ε,F , d) dε

And then we can sent the RHS to 0 by sending δ ↓ 0 as long as the integral on the RHS is finite.
Asymptotic tightness plus convergence of marginals will give convergence to a tight element in `∞(F)
by Theorem 2.5. What remains is to show the conditions on G, separability and subgaussian.

3.3 Symmetrization

Symmetrization is a technique that will allow us to get/show(?) a subgaussian process. This follows the
discussion in Chapter 2.2.1 and 2.3 in VanDerVaart and Wellner.

What sort of variables are subgaussian? A classic example below.

Definition 3.11 (Rademachar Random Variable). Random variable εi : Ωi → R is a Rademachar random
variable if P(εi = 1) = P(εi = −1) = 1/2.

The following lemma shows that a particular process consisting of Rademachar random variables is subgaus-
sian.



Page 26

Lemma 3.4 (Hoeffding’s Inequality). Let a1, . . . , an be constants and ε1, . . . , εn be independent Rademachar
random variables. Then

P
(∣∣ n∑

i=1

aiεi
∣∣ > x

)
≤ 2e

1
2

x2

‖a‖2 .

where ‖a‖ denotes the Euclidean norm of a.

Proof. (From VdV&W, Lemma 2.2.7) For any λ and any Rademachar random variable ε one has that
Eeλε =

(
eλ + e−λ

)
/2. By power series expansion:

eλ = 1 + λ+
λ2

2!
+
λ3

3!
+ . . .

e−λ = 1− λ+
λ2

2!
− λ3

3!
+ . . .

=⇒
(
eλ + e−λ

)
/2 = 1 +

λ2

2!
+
λ4

4!
+
λ6

6!
. . .

≤ 1 +
λ2

2
+

λ4

22 · 2!
+

λ6

23 · 3!

= eλ
2/2

where in the last inequality we use that 2k · k! ≤ (2k)! so that in total we have that Eeλε =
(
eλ + e−λ

)
/2 ≤

eλ
2/2. Take λ = x/‖a‖2 and apply Markov’s inequality to get the result.

Example. For any functions f, g we have that

P
(∣∣∣∣ n∑

i=1

εi√
n

(
f(xi)− g(xi)

) ∣∣∣∣ > x | {Xi}
)
≤ 2e

− 1
2

x2

d2n(f,g) .

where d2
n(f, g) := 1

N

∑n
i=1

(
f(xi)− g(xi)

)2
is the square of the prediction norm.

We would like to use the maximal inequality in Theorem 3.1 to control E[supf,g |Gn(f) − Gn(g)|], but the
problem is that Gn is not (in general), subgaussian. However, from Lemma 3.4 we know that, at least
conditional on our data, G◦n := 1√

n

∑
εi(f(xi) − g(xi)) is. Strategy will be to relate the two processes, Gn

and G◦n.

Before starting, it is useful to formally define the probability space that we are working with. Let ε1, . . . , εn
be i.i.d Rademachar random variables that are generated independent of (X1, . . . , Xn), our observed data.
Define the symmetrized process:

P◦nf =
1

n

n∑
i=1

εif(Xi).

Because P◦n is subgaussian, conditional on X1, . . . , Xn, it can be easier to study. We want to bound supremum
of the process Pn −P by that of the symmetrized process. To formalize these bounds, we have to be careful
about the non-measurability of supremum like ‖Pn − P‖F .1

In the following discussion, outer expectations of functions of X1, . . . , Xn are assumed to be taken with
respect to the coordinate projection of the infinite product space (XN,AN, PN) onto its first n coordinates,
(Xn,An, Pn).2. When auxiliary variables, independent of the X’s are involved, as in the next lemma, we
can use a similar convention. The underlying probability space is assumed to be of the form (Xn,An, Pn)×

1Even if F is a class of measurable functions, the supremum may not be measurable.
2That is the outer expectation is taken relative to Pn where Pn is defined from the projection of the infinite product space

onto its first n coordinates
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(Z, C, Q). Independence is understood in terms of a product probability space.3. To manage all this, we
take advantage of a modified Fubini’s theorem for outer expectations, stated here without proof.

Lemma 3.5 (Fubini’s Theorem, Lemma 1.2.6 VdV&W). Let T be defined on a product probability space.
Then

E?T ≤ E1?E2?T ≤ E?1E?2T ≤ E?T.

Proof. For the last inequality, we can assume that E?T < ∞ so that E?T = ET ?. Since T ? is jointly
measurable with respect to the product σ-field, the map ω2 7→ T ?(ω1, ω2) is a measurable majorant of
ω2 7→ T (ω1, ω2) for P1 almost all ω1. Hence

∫
T ?(ω1, ω2)dP2(ω2) ≥ (E?2T ) (ω1) for P1 almost all ω1. Further,

by Fubini’s theorem for standard integrals, this is a measurable function of ω1. Thus the integral of this with
respect to P1 is an upper bound for E?1E?2T . Since T ? is jointly measurable, by another application Fubini’s
theorem for standard integrals:

E?T = ET ? =

∫ (∫
T ?(ω1, ω2)dP2(ω2)

)
dP1(ω1) ≥ E?1E?2T.

The inequalities for inner expectations hold by considering −T .

Lemma 3.6 (Symmetrization). For every non-decreasing, convex, Φ : R → R and class of measurable
functions F :

E?Φ
(
‖Pn − P‖F

)
≤ E?Φ

(
2 ‖P◦n‖F

)
.

Where outer expectations are calculated as described above.

Proof. Let Y1, . . . , Yn be independent copies of X1, . . . , Xn (independently drawn from the same joint distri-
bution as X1, . . . , Xn, defined formally as the coordinate projections on the last n coordinates in the product
space (Xn,An, Pn)× (Z, C, Q)× (Xn,An, Pn)).

For fixed values X1, . . . , Xn applying Jensen’s inequality to the absolute value gives:

‖Pn − P‖F = sup
f∈F

1

n

∣∣∣∣∣∣
n∑
i=1

[
f(Xi)− Ef(Yi)

]∣∣∣∣∣∣ ≤ E?Y sup
f∈F

1

n

∣∣∣∣∣∣
n∑
i=1

[
f(Xi)− f(Yi)]

∣∣∣∣∣∣ .
where E?Y is the outer expectation with respect to Y1, . . . , Yn computed for Pn. Again applying Jensen’s
inequality gives:

Φ
(
‖Pn − P‖F

)
≤ EY Φ

∥∥∥∥ 1

n

n∑
i=1

[
f(Xi)− f(Yi)]

∥∥∥∥?Y
F

 .

where f?Y is the minimal measurable majorant of f with respect to the distribution of Y . Because Φ is
non-decreasing and continuous, the ?Y inside Φ can be moved to E?Y . In total then:

Φ
(
‖Pn − P‖F

)
≤ E?Y Φ

∥∥∥∥ 1

n

n∑
i=1

[
f(Xi)− f(Yi)]

∥∥∥∥
F

 .

Next, take the expectation with respect to X1, . . . , Xn of the above quantity to get:

E?Φ
(
‖Pn − P‖F

)
≤ E?XE?Y Φ

 1

n

∥∥∥∥ n∑
i=1

[
f(Xi)− f(Yi)

]∥∥∥∥
 .

3Two sub-sigma algebras, A1,A2 ⊂ A are considered independent if P(A1A2) = P(A1)P(A2) for any A1 ∈ A1, A2 ∈ A2. The
sigma algebra generated by a random map X : (Ω,A,P)→ (X ,B) is the smallest sigma algebra on Ω that makes X measurable,

σ(X) := {X−1(B) : B ∈ B}.

Two random variables, X,Y , defined on the same probability space are independent if their generated sigma algebras,
σ(X), σ(Y ), are independent. In the context of having independent draws X1, . . . , Xn we can think of this as the projec-
tion mappings πi(Xn) being independent.
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Adding a minus sign in front of the term
[
f(Xi) − f(Yi)

]
has the effect of exchanging Xi and Yi. By

construction of the underlying probability space this does not change the expectation. Hence, the expression

E?Φ

 1

n

∥∥∥∥ n∑
i=1

ei
[
f(Xi)− f(Yi)

]∥∥∥∥
 .

is the same for any n-tuple (e1, . . . , en) ∈ {−1, 1}n. So:

E?Φ
(∥∥Pn − P∥∥F) ≤ EεE?X,Y Φ

∥∥∥∥ n∑
i=1

εi
[
f(Xi)− f(Yi)

]∥∥∥∥
F

 .

where each εi is an independent Rademachar random variable and ε = (ε1, . . . , εn). By triangle inequality
and convexity of the Φ:

EεE?X,Y Φ

∥∥∥∥ n∑
i=1

εi
[
f(Xi)− f(Yi)

]∥∥∥∥
F


≤ EεE?X,Y Φ

∥∥∥∥ 1

n

n∑
i=1

εif(Xi)

∥∥∥∥
F

+

∥∥∥∥ 1

n

n∑
i=1

εif(Yi)

∥∥∥∥
F


≤ 1

2
EεE?X,Y Φ

2

∥∥∥∥ 1

n

n∑
i=1

εif(Xi)

∥∥∥∥
+

1

2
EεE?X,Y Φ

2

∥∥∥∥ 1

n

n∑
i=1

εif(Yi)

∥∥∥∥


≤ E?Φ
(
2 ‖P◦n‖F

)
where we use the face that a repeated outer expectation can be bounded above by a joint outer expectation,
EεE?X,Y ≤ E?ε,X,Y (= E?) using Lemma 3.5.

Corollary 3.1 (Symmetrization of Empirical Process, Andres’ Notes). For real valued processes as described
above:

E?
sup
f∈F

∣∣∣∣ 1√
n

n∑
i=1

f(Xi)− Pf(Xi)

∣∣∣∣
 ≤ 2E?

sup
f∈F

∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣
 .

Proof. Take Φ(x) = |x|. All norms on R are equivalent to | · |. Lemma 3.6 then gives us that E? ‖Pn − P‖F ≤
2E? ‖P◦n‖F . Expand this out and scale by

√
n to get the result. For non real-valued processes (vector valued,

function valued, etc.) we can replace |·| with ‖·‖ above.

Remark. The proof of Corollary 3.1 uses the fact that Lemma 3.6 is not an asymptotic bound, it holds in
every finite sample.

We know have the pieces to show a class of functions F is either

• Glivenko-Cantelli, i.e that ‖Pn − P‖F = op(1). We will do this by placing conditions on the bracket-
ing/covering numbers.

• Donsker, i.e that Gn(F)
L→ G(F) for some tight G. To do so, we will use covering numbers. The

system of arguments needed to show this is usually as follows:

– By Theorem 2.5 weak convergence to a tight limit is equivalent to asymptotic tightness and weak
convergence of the marginals.

– Weak convergence of the marginals is generally provided by CLT.Theorem 2.7 shows that asymp-
totic tightness is equivalent to uniform ρ-equicontinuity (Definition 1.18)
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– Asymptotic equicontinuity holds if E
[
supf∈Fδ

∣∣Gn(f)
∣∣] goes to 0 as δ ↓ 0. Theorem 3.1 gives

conditions where this is possible for separable, subgaussian processes.

– Lemma 3.3 suggests separability if F is separable. Lemma 3.4 gives us that the Rademachar
process is subgaussian conditional on X1, . . . , Xn. Combining with Theorem 3.1 gives

Eε

 sup
f∈Fδ

∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣
 ≤ ∫ diam(Fδ)

0

√
logN

(
s,Fδ, L2(Pn)

)
ds

where L2(Pn) = 1
n

∑n
i=1 f(Xi)

2 is the L2 norm with respect to the empirical measure. Since X
is random this norm will also end up random. This seems like it will make dealing with

E

[∫ diam(Fδ)

0

√
logN

(
s,Fδ, L2(Pn)

)
ds

]

painful, but we end up having good bounds for this.

– Lemma 3.6, and in particular Corollary 3.1, relates the empirical process to the Rademachar
process. Take expectations with respect to X in the above bound to bound the and apply the
symmetrization lemma to get bounds on the empirical process of interest.

We next move to verifying the various conditions and applying them to show that some specific processes
are Glivenko-Cantelli or Donsker.

3.4 Glivenko-Cantelli

This subsection follows Section 2.4 in Van DerVaart and Wellner. Goal is to establish conditions for a
uniform law of large numbers using bracketing and covering numbers.

Theorem 3.2 (Bracketing Glivenko-Cantelli Theorem). Let F be a class of measurable functions such that

N[ ]

(
ε,F , L1(P )

)
<∞

for every ε > 0. Then F is Glivenko-Cantelli.

Proof. Fix ε > 0. Choose finitely many ε-brackets [li, ui] whose union contains F and such that P (ui−li) < ε
for every i. Then, for every f ∈ F there is a bracket, li ≤ f ≤ ui, such that:

(Pn − P ) f ≤ Pnui − Pf ≤ (Pn − P )ui + P (ui − f) ≤ (Pn − P )ui + ε

(Pn − P ) f ≥ Pnli − Pf ≥ (Pn − P ) li + P (li − f) ≥ (Pn − P ) li − ε

Consequently,

sup
f∈F

(Pn − P ) f ≤ max
i

(Pn − P )ui + ε

inf
f∈F

(Pn − P ) f ≥ min
i

(Pn − P ) li − ε

By the strong law of large numbers, both the maximums and the minimums on the right hand side of the
inequalities above converge almost surely to 0. Combination these yields that lim sup ‖Pn − P‖?F ≤ ε almost
surely for every ε > 0. Take ε ↓ 0 to see that the lim sup must be 0 almost surely.

Remark. Some comments on Theorem 3.2:

1. Proof is really quite straightforward. Bracketing gives pointwise control so just use the upper and lower
bounds.

2. No measurability condition is needed and no requirements on the rate of growth of N[ ] (ε, ·, ·) as ε ↓ 0.
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Example (Empirical CDF is Glivenko-Cantelli). Let X be a scalar random variable.1. We want to show
that

sup
t∈R

∣∣∣∣ 1n
n∑
i=1

1{Xi ≤ t} − P (Xi ≤ t)
∣∣∣∣ = op(1).

Let F =
{
f(x) = 1{Xi ≤ t} : t ∈ R

}
. Partition R into grids −∞ = t0 < t1 < · · · < tm = ∞ such that

P (ti ≤ X ≤ ti+1) < ε for each i. Then the finitely many brackets
[
1{Xi ≤ ti},1{Xi ≤ ti+1}

]
cover F and

are “size” ε under P . So, N[ ]

(
ε,F , L1(P )

)
< ∞ for every ε > 0. So F is Glivenko-Cantelli (i.e, we have a

uniform law of large numbers).

The requirement on the bracketing numbers can in general be hard. Would like a result for the covering
numbers as well. This will make showing that some classes are Glivenko-Cantelli easier later on. Before
doing so, we need to make a couple definitions:

Definition 3.12 (Envelope). A class F has envelope F if |f(x)| ≤ F (x) for all x and all f ∈ F .

Definition 3.13 (Truncated Class). Let F be a class of functions. Then the truncated class FM is given

FM =
{
f(x)1{f ≤M} : f ∈ F

}
.

Definition 3.14 (P-Measurable Class). A class F is P -measurable if supf∈F
∣∣ 1
n

∑n
i=1 f(xi)εi

∣∣ is measurable
with respect to the product measure on (Xm,Am, Pn) × (Z, C, Q), where (Z, C, Q) denotes the probability
space that the Rademachar random variables are defined on.

Definition 3.15 (Lp(Pn)-norm). We have that ‖f − g‖L1(P ) = EP
[∣∣f(x)− g(x)

∣∣p]1/p, similarly we can

define

‖f − g‖Lp(Pn) = EPn

[∣∣f(x)− g(x)
∣∣p]1/p .

and through this define N[ ]

(
ε,F , Lp(Pn)

)
.

Theorem 3.3 (Covering Glivenko-Cantelli Theorem). Let F be a P -measurable class of measurable functions
with envelope F such that P?F < ∞. If logN

(
ε,FM , L1 (Pn)

)
= oP?(n) for every ε and M > 0, then

‖Pn − P‖?F → 0 almost surely and in mean.

Proof. Idea will be to apply the maximal inequality in Theorem 3.1.

Step 1: Symmterization. First, we will apply symmetrization (Corollary 3.1)

E?
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Pf(Xi)

∣∣∣∣
 ≤ 2 · E?

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣


And then truncate the functions, f = f1{f ≤ M}+ f1{f > M}, apply triangle inequality, and bound the
functions not in FM with the envelope F .

≤ 2EXEε

 sup
f∈FM

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣
+ 2E?

[
εiF (Xi)1{F ≥M}

]

= 2EXEε

 sup
f∈FM

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣
+ 2P ?F (Xi)1{F ≥M}

Note the argument that allows us to replace the first outer expectation with iterated expectations over X
and ε: each of the functions in F are measurable and FM is uniformly bounded, which means that the
supremum will be measurable and bounded with probability 1 in any finite sample (with respect to the
empirical measure/conditional on the X data).

Since P ?F <∞ we can choose M so that the term on the right is arbitrarily small. 2 That is, for any δ > 0

1This generalizes easily for a vector valued random variable
2I am sort of using P ? and E?X interchangeably here, which I apologize for
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we can pick M such that

E?
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Pf(Xi)

∣∣∣∣
 ≤ EXEε

 sup
f∈FM

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣
+ δ.

Step 2: Deal with the term that is conditional on {Xi}. Let Gδ = {g1, . . . , gK(δ)} be such that for every

f ∈ FM there is a g ∈ Gδ such that ‖f − g‖L1(Pn) < δ. Since logN
(
δ,Fm, L1(Pn)

)
= op(n), we know that

it is possible to pick a Gδ in this fashion with probability approaching 1. Note that:

• Cardinality of Gδ: |Gδ| = N
(
δ,FM , ‖ · ‖L1(Pn)

)
.

• Envelope of Gδ: by construction FM ≤M so we can assume that Gδ ≤M .

Then, for all f ∈ FM we have that, for some g ∈ Gδ:∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑
i=1

εig(Xi)

∣∣∣∣+

∣∣∣∣ 1n
n∑
i=1

εi
(
f(Xi)− g(Xi)

) ∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

εig(Xi)

∣∣∣∣+ δ

This gives us that

Eε

 sup
f∈FM

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣
 ≤ Eε

 sup
g∈Gδ

∣∣∣∣ 1n
n∑
i=1

εig(Xi)

∣∣∣∣
+ δ.

Step 3: Apply the Maximal Inequality. We bound the first term in the last display using the maximal
inequality in Lemma 3.2, for the particular case of the ψ2 Orlicz norm 3: if D = {f1, . . . , fM} then

E

[
sup
f∈D

∣∣∣∣f(Xi)

∣∣∣∣
]
≤ C

√
1 + logm

for any C with E
[
exp

(
f(Xi)
C2

)
− 1

]
≤ 1 for all f ∈ D. In our setting we will apply this to the functions

1
n

∑n
i=1 εig(Xi) for g ∈ Gδ, with the g(Xi) treated as fixed so that these are considered random variables in

εi. In our setting we can bound:

Eε

 sup
g∈Gδ

∣∣∣∣ 1n
n∑
i=1

εig(Xi)

∣∣∣∣
 ≤ Cδ√1 + logN

(
δ,FM , ‖ · ‖L1(Pn)

)
.

for such a Cδ such that, for all g ∈ Gδ

Eε

exp

( 1

n

n∑
i=1

εig(Xi)

)2

/C2
δ

− 1

 ≤ 1.

Hoeffding’s inequality (Lemma 3.4) gives us that, for a general Rademachar process:

Pε

∣∣∣∣ n∑
i=1

εiai

∣∣∣∣ > x

 ≤ 2 exp

(
−1

2

x2

‖a‖2

)
3We know that, in any finite sample, this Orlicz norm exists because our empirical expectation is bounded.



Page 32

Where the norm above is the standard Euclidean norm. In our setting:

Pε

∣∣∣∣ n∑
i=1

εi
g(Xi)

n

∣∣∣∣ > x

 ≤ 2 exp

(
−1

2

x2

n−2
∑
g(Xi)2

)

As discussed above, we can uniformly bound Gδ by M . The exponential is negative so it is decreasing in the
numerator and increasing in the denominator. This allows us to get:

Pε

∣∣∣∣ n∑
i=1

εi
g(Xi)

n

∣∣∣∣ > x

 ≤ 2 exp

(
− nx2

2M2

)

Now apply Lemma 3.1. If P
(
|X| > x

)
≤ Ke−Dx

2

then the ψ2-Orlicz norm of X is less than
√

(1 +K)/D.

Using the above take K = 2 and D = n/(2M2) to get Cδ =
√

6M2/n. Putting this together with the
original application of the maximal inequality towards the top of Step 3, we get:

Eε

 sup
g∈Gδ

∣∣∣∣ 1n
n∑
i=1

εig(Xi)

∣∣∣∣
 ≤√6M2/n+ logN

(
δ,FM , ‖ · ‖L1(Pn)

)
/n

By assumption logN (·)/n = oP (1) and the first term under the square root is o(1) so that this whole thing
is op(1). All together, combining this with the result of Step 2, we have shown that, for any δ > 0:

Eε

 sup
f∈FM

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣
 ≤ δ + op(1).

So that the whole thing (Eε[supf∈FM . . . ]) is op(1).

Step 4: Put all the parts together.

By the symmetrization at the top of step 1, we have that, for every δ > 0

E

sup
F

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣
 ≤ 2EXEε

 sup
f∈FM

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣
+ δ.

In Step 3, we showed that the inner expectation is op(1). Combining this with the fact that FM ≤M gives
us that4:

EXEε

 sup
f∈FM

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣
 = o(1).

which we can combine with Markov’s inequality to get that

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

{
f(Xi)− Pf(Xi)

} ∣∣∣∣ = op(1).

This shows that ‖Pn−P‖?F → 0 in mean. From VdV&W: That it also converges almost surely follows from
the fact that the sequence ‖Pn − P‖?F is a reverse martingale with respect to a suitable filtration.5

Remark. A couple comments on Theorem 3.3:

• Proof is harder than that using bracketing numbers (Theorem 3.2). However, the technique is much
closer to what will be used for the Donsker Theorems.

• Note how the measurability is obtained using the εi and conditioning on {Xi}.

• The conditions look cryptic, but we will find ways of verifying them.

4Convergence in probability to 0 implies convergence in distribution to 0 implies convergence in bounded moments
5This part may depend on i.i.d. I am not familiar with the martingale convergence theorems.
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3.5 Donsker Theorems

This subsection follows section 2.5 in Van DerVaart and Wellner. In this subsection we will establish
conditions for F to be Donsker (Definition 3.4). We will present two main results, one that relies on the
covering numbers (through a Uniform Entropy condition) and another using the bracketing numbers.

Definition 3.16 (Uniform Entropy Condition). Let F be a class of functions with envelope F and let Q
be the set of all finitely discrete probability measures on (X ,A). We say that F satisfies a uniform entropy
bound if: ∫ ∞

0

sup
Q∈Q

√
log
(
ε‖F‖Q,2,F , L2(Q)

)
dε <∞ (UEB)

Similarly to before define

Fδ =
{
f − g : f, g ∈ F and ‖f − g‖P,2 < δ

}
(3.10)

F2
∞ =

{
(f − g)2 : f, g ∈ F

}
(3.11)

Theorem 3.4 (Covering Donsker Theorem). Let F be a class of measurable functions with envelope F that
satisfies the uniform entropy bound, (UEB). Let the classes Fδ and F2

∞ also be P -measurable for every
δ > 0. If P ?F 2 <∞ then F is P -Donsker.

Proof. Because the envelope F has a bounded second moment we can apply CLT to get convergence of the
marginals for any finite collection f1, . . . , fk. That is

(Gnf1, . . . ,Gnfn)
L→ (Gf1, . . . ,Gfk) .

for some tight limit G. By Theorem 2.5 it is now sufficient (and necessary) to show that Gn(F) is asymp-
totically tight. We do this by way of Theorem 2.7, showing that Gn is asymptotically ρ-equicontinuous and
F it totally bounded for some ρ.1 That is, we want to show that there is some ρ semimetric with

P

(
sup

ρ(f,g)<δ

∣∣Gnf −Gng
∣∣ > ε

)
< η.

Goal will be to show this for ρ(f, g) =
(
P (f − g)2

)1/2
.

Step 1: Use Symmetrization to apply Maximal Inequality. Apply Markov’s inequality and then Lemma 3.6
(or Corollary 3.1) to the class

√
nFδ to get:

P

(
sup

ρ(f,g)<δ

|Gnf −Gng| > ε

)
≤ 1

ε
· E

[
sup

ρ(f,g)<δ

|Gnf −Gng|

]

≤ 2

ε
· EXEε

 sup
ρ(f,g)<δ

∣∣∣∣ 1√
n

n∑
i=1

εi
(
f(xi)− g(xi)

) ∣∣∣∣
 (D-0)

Note that the inside is measurable, so we can use iterated expectations. Recall by the maximal inequality
(Theorem 3.1) if D is a set equipped with metric d and G is a subgaussian process, then

E

[
sup
f,g∈D

|Gf −Gg|

]
≤ C

∫ diam(D)

0

√
logN (ε,D, d) dε.

1We know that the marginals of Gn are asymptotically tight because they converge to a tight limit (Lemma 2.1)
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where subgaussian is defined as P
(
|Gf −Gf | > x

)
≤ 2 exp

(
− 1

2x
2/d2(f, g)

)
. Lemma 3.4 (Hoeffding’s) gives

us that the Rademachar process is subgaussian conditional on {Xi} for any class of functions F equipped
with the L2(Pn) norm.2 This gives us that

Eε

 sup
ρ(f,g)<δ

∣∣∣∣ 1√
n

n∑
i=1

εi
(
f(xi)− g(xi)

) ∣∣∣∣
 . ∫ diam(Fδ)

0

√
logN

(
ε,Fδ, ‖ · ‖L2(Pn)

)
dε (D-1)

where note that the diameter on the RHS is calculated with respect to L2(Pn) not the ρ(f, g) = |f − g|L2(P )

on the right hand side.3

Step 2: Make Sense of the Upper Bound. Let θ2
n := diam2(Fδ) = supρ(f,g)<δ

1
n

∑n
i=1

(
f(xi)− g(xi)

)2
. Let

u := ε/ ‖F‖L2(Pn) and rewrite the above4∫ diam(Fδ)

0

√
logN (ε,Fδ, L2(Pn)) dε =

∫ θn

0

√
logN (ε,Fδ, L2(Pn)) dε

= ‖F‖Pn,2
∫ θn/‖F‖Pn,2

0

√
logN

(
u ‖F‖Pn ,Fδ, L2(Pn)

)
du

Since Pn is a discrete probability measure

≤ ‖F‖Pn,2
∫ θ/‖F‖Pn,2

0

sup
Q

√
logN

(
u‖F‖Q,2,F , ‖ · ‖L2(Q)

)
du

But, since Fδ ⊆ F∞ we get that N (ε,Fδ, L2(Q)) ≤ N (ε,F∞, L2(Q)). Also, see that N (ε,F∞, L2(Q)) ≤
N 2(ε/2,F , L2(Q)). (Why?) In total:∫ diam(Fδ)

0

√
logN (ε,Fδ, L2(Pn)) dε ≤ ‖F‖Pn,2

∫ θn/‖F‖·

0

sup
Q

√
2 logN

(
u‖F‖Q,2/2,F , L2(Q)

)
du (D-2)

Step 3: Go Back to the Full Expectation. Combining the inequality directly above and (D-1) and applying
to the symmetrization inequality in (D-0), we get that

E

 sup
ρ(f,g)<δ

∣∣∣∣ 1√
n

n∑
i=1

εi
(
f(xi)− g(xi)

) ∣∣∣∣
 ≤ E

[
‖F‖Pn,2

∫ θn/‖F‖·

0

sup
Q

√
2 logN

(
u‖F‖Q,2/2,F , L2(Q)

)
du

]
Where the expectations above are with respect to X. Apply Cauchy-Schwarz to upper bound the above by

EX

(∫ θn/‖F‖·

0

sup
Q

√
2 logN

(
u‖F‖Q,2/2,F , L2(Q)

)
du

)2
1/2

EX
[
‖F‖2Pn,2

]1/2
(D-3)

Note that EX [‖F‖2Pn,2] = EX [n−1
∑
F 2(xi)] ≤ P ?F 2 < ∞. What is left is to show that the expectation of

the integral in (D-3) converges to zero provided that θn/‖F‖Pn,2 →P? 0.

Step 4: Figure out what is happening with θn/‖F‖Pn,2. Note that ‖F‖Pn,2 is bounded below by ‖F?‖Pn,2
which converges almost surely to its expectation. Recall that

θ2
n = sup

ρ(f,g)<δ

1

n

n∑
i=1

(
f(xi)− g(xi)

)2 ≤ sup
ρ(f,g)<δ

‖(Pn − P )(f − g)2‖︸ ︷︷ ︸
=‖Pn−P‖F2

δ

+ sup
ρ(f,g)<δ

P (f − g)2

︸ ︷︷ ︸
<δ2

.

2Note that ∥∥∥∥∥∥
[

1
√
n
f(xi)−

1
√
n
g(xi)

]n
i=1

∥∥∥∥∥∥
2

=
1

n

n∑
i=1

(
f(xi)− g(xi)

)2
= ‖f − g‖L2(Pn) .

3It also may be helpful to recall that Fδ =
{
f − g : ρ(, g) < δ

}
4Going to use L2(Pn) or just ‖ · ‖Pn,2 instead of ‖ · ‖L2(Pn) to save some space. Also the empirical measure is bounded and

F has bounded second outer moment so we know that ‖F‖L2(P2) <∞ almost surely.
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Since F2
δ ⊆ F2

∞ we want to show to show that F2
∞ is Glivenko-Cantelli. Theorem 3.3 gives that is enough

to show that logN (ε,F2
∞, L1(Pn)) = oP?(n).5 For any pair of functions f, g ∈ F∞

Pn|f2 − g2| = Pn|(f − g)(f + g)| ≤ Pn|f − g|4F ≤ 2‖F‖Pn,2‖f − g‖Pn,2.6

where in the above we use that 2F is an envelope for F∞. This gives us that N (ε,F2
∞, L1(Pn)) ≤

N (ε/‖2F‖Pn,2),F∞, L2(Pn)). Why? Suppose we cover F2
∞ with N balls of size ε. By the inequalities

above, we can find equivalent (centered at say, (f−g)/2 instead of (f2−g2)/2) balls that will cover F2
∞ with

radius ε/‖F‖Pn,2 in L2(Pn). As argued above, we know that this is less than N 2(ε
/

4‖F‖L2(Pn),F , L2(Pn))
which we know has to be finite for any ε in order for (UEB) to be satisfied. Since N (ε,F∞, L1(Pn)) is
bounded by a constant, it’s logarithm is surely op?(n).

So, combining with the display at the beginning of this set we have that

θ2
n ≤ sup

ρ(f,g)<δ

∣∣∣∣(Pn − P )(f − g)2

∣∣∣∣+ δ2 →a.s δ.

Together this gives us that
θn

‖F‖Pn,2
≤ θn
‖F?‖Pn,2

→a.s
δ

‖F?‖P,2
. (D-4)

Step 5: Put Together to get Asymptotic Equicontinuity. Take C = (P ?F 2)1/2 and combine the inequalities
in (D-1), (D-2), (D-3) with the convergence result in (D-4).

lim supP

(
sup

ρ(f,g)<δ

|Gnf −Gng| > ε

)

≤ 1

ε
lim supE

[
‖F‖Pn,2

∫ θn/‖F‖Pn,2

0

sup
Q

√
2 logN

(
u‖F‖Q,2/2,F , L2(Q)

)
du

]

≤ C

ε
lim supE

(∫ θn/‖F‖Pn,2

0

sup
Q

√
2 logN

(
u‖F‖Q,2/2,F , L2(Q)

)
du

)2
1/2

→a.s
C

ε

∫ δ/‖F?‖P,2

0

sup
Q

√
2 logN

(
u‖F‖Q,2/2,F , L2(Q)

)
du

However, by the uniform entropy bound in (UEB) the integral up to infinity in the above display is finite so
the display above converges to 0 as δ ↓ 0. So we have verified that Gn is asymptotically equicontinuous.

Step 6: Verify that F is totally bounded. Finally what remains is to show that F is totally bounded in L2(P )
(Definition 1.17). Take a sequence of discrete measures Pn such that ‖Pn − P‖F∞ converges to 0. Since we

know that F∞ is Glivenko-Cantelli, this is always possible. Pick n large enough such that ‖Pn−P‖F∞ < δ2.
By triangle inequality

P (f − g)2 = Pn(f − g)2 − (Pn − P )(f − g)2 ≤ 1

n

n∑
i=1

(
f(xi)− g(xi)

)2
+ ‖Pn − P‖F∞ .

This implies that F is totally bounded under L2(P ) since we are totally bounded under L2(Pn) (Finite
Envelope + Finite Measure).

Example 3.5 (Cells in R are Donsker). Let X be a scalar and suppose that we want to show a functional
CLT for

Gn(t) =
1√
n

n∑
i=1

{
1[Xi ≤ t]− P (X ≤ t)

}
.

5Inherits bounded envelope by triangle inequality. If F bounds F , then 4F 2 bounds F2
∞.

6By Cauchy-Schwarz: 1
n

∑n
i=1 f(xi)g(xi) ≤

[
1
n

∑n
i=1 f

2(xi)
]1/2 [

1
n

∑n
i=1 g

2(xi)
]1/2
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Main challenge is showing the uniform entropy bound (UEB). Recall that for any ‖ · ‖, N (ε,F , ‖ · ‖) ≤
N[ ](2ε,F , ‖ · ‖). Apply the above to ‖ · ‖Q,2. Partition R into −∞ = t0 < t1 < · · · < tk = ∞ such that

P(ti ≤ X ≤ ti+1) ≤ 4ε2. These cover F =
{
f(x) = 1{x ≤ t}, t ∈ R

}
. Further

E
[(
1[X ≤ ti]− 1[X ≤ ti+1]

)2]1/2
= P (ti ≤ X ≤ Ti+1)

1/2
= 2ε.

In order to cover F we need d1/4ε2e ≤ 2ε2. This process can be done for any probability measure Q so that
if ε < 1:

N (ε,F , L2(Q)) ≤ N[ ](2ε,F , L2(Q)) ≤ 2/ε2 ∧ 1.

If ε ≥ 1 only one ball is needed. Then, since F (x) = 1 and if ε > 1 one ball is enough (and log 1 = 0):∫ ∞
0

sup
Q

√
logN (ε‖F‖‖Q,2,F , L2(Q)) dε =

∫ 1

0

sup
Q

√
logN (ε,F , L2(Q)) dε

≤
∫ 1

0

√
log(2/ε) dε

This is easily Donsker by Theorem 3.4 and in fact the argument hold for cells in RK . However, note that
this seems like cheating a bit, since we are using the bracketing numbers to get the covering numbers.

We now want to show a Donsker Theorem using bracketing numbers. The proof is more involved than for
the Glivenko-Cantelli Theorem (Theorem 3.2) using bracketing numbers, so we may not get too far into it
here.

To show this theorem we make minor use of the following related statements from VdV&W.

Lemma 3.7 (Problem 2.5.5 VdV&W). If X is a positive random variable, ‖X‖22 ≤ supt>0 tEX1{X > t} ≤
2‖X‖22.

Lemma 3.8 (Problem 2.5.6 VdV&W). Any random variable X with a finite second moment satisfies
E|X|{X > t} = o(t−1) as t→∞.

Lemma 3.9 (Equation 2.5.5 VdV&W). For a finite set F of cardinality F ≥ 2,

E‖Gn‖F . max
f

‖f‖∞√
n

log |F|+ max
f
‖f‖P,2

√
log |F|.

Theorem 3.5 (Bracketing Donsker Theorem). Let F be a class of measurable functions with an envelope
F such that P ?F 2 <∞ and ∫ ∞

0

√
logN[ ]

(
ε,F , L2(P )

)
dε <∞ (3.12)

then F is Donsker.

Proof. The proof of this is roughly based on the steps in Theorem 2.5.6 in VanDerVaart and Wellner. I
attempt to replicate the argument below:

For each q ∈ N there is a partition F =
⋃Nq
i=1 Fqi of F into Nq disjoint subsets such that

∞∑
i=1

2−q
√

logNq <∞

‖
(

sup
f,g∈Fqi

|f − g|
)?‖P,2 < 2−q

sup
f,g∈Fqi

‖f − g‖P,2 < 2−q

To see this, cover F with a minimal numbers of L2(P ) balls and L2(P ) brackets of size 2−q, disjointify and
take the intersection of the two partitions. By definition of the 2−q balls and 2−q brackets, the last two
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conditions hold. To see that the first condition holds note that the integral of the bracketing number being
finite implies that the integral of the covering number is finite, and that N[ ] and N are decreasing in ε. For
any decreasing function f it is clear that

n∑
i=1

2−qf(q) ≤
∫ ∞

0

f(q) dq.

which gives us the first condition. This sequence of partitions can, without loss of generality, be chosen as
successive refinements. 7

For each q choose a fixed element fqi from each partitioning set Fqi and define πqf = fqi if f ∈ Fqi. Further
define ∆qf = supf,g∈Fq,i |f − g|

? if f ∈ Fqi.

Note that πqf and ∆qf take on one of Nq values as f ranges through F . In view of Theorem 2.6 it suffices
to show that the sequence ‖Gn(f − πq0f)‖F converges in probability to zero as n → ∞ for an arbitrary q0

and then take q0 →∞.

Define for each fixed n and q ≥ q0 the following numbers and indicator-type functions:

aq = 2−q/
√

logNq+1

Aq−1f = 1{∆q0f ≤
√
naq0 ∧ · · · ∧∆q−1f ≤

√
naq−1}

Bqf = 1{∆q0f ≤
√
naq0 ∧ · · · ∧∆q−1f ≤

√
naq−1 ∧∆qf >

√
naq}

Bq0 = 1{δq0f >
√
naq0}

Note that Aqf and Bqf are constant in f on each of the partitioning sets Fqi at level q because the partitions
are nested.8

Now, pointwise in x, decompose

f − πq0f = (f − πq0f)Bq0f +

∞∑
q=q0+1

(f − πqf)Bqf +

∞∑
q=q+1

(πqf − πq−1f)Aq−1f (B-1)

Here note that we are essentially decomposing the event space into Bq0 and Bcq0 = Aq0 . We can think of
Bq as f being “between” Aq−1 and Aq. That is, if all the conditions for Bq hold except for the last one,
then Aq−1 is equal to 1 and Bq is equal to zero. Conversely if Bq is equal to one, then all the conditions for
Aq hold except for the last one (∆qg ≤

√
naq) so Aq is equal to zero and Bq is equal to one. Equivalently

Aq + Bq = Aq−1 or Aq−1 − Aq = Bq. Combine this with the fact that sets indicated Aq are nested and
telescope to get the decomposition above.

Now we will apply the empirical process Gn =
√
n (Pn − P ) to each of the terms in (B-1) and take the

suprema over f ∈ F . We will show that each of the resulting 3 variables converge to zero in probability and
then take q0 →∞.

7To see this, construct a sequence of partitions F =
⋃N̄q
i=1 F̄qi without this property. Next, take the partition at stage q,

F =
⋃Nq
i=1 Fqi to consists of all intersections of the form

⋂q
p=1 F̄p,ip (basically take the intersection of all partitions up till q)

so that |Nq | =
∏q
p=1 N̄p. Using the inequality

(
log
∏
N̄p
)1/2 ≤∑(

log N̄p
)1/2

we get that:

∞∑
q=1

2−q
√

logNq ≤
∞∑
q=1

2−q
q∑
p=1

log
√
N̄p

=

∞∑
q=1

2−q
∞∑
p=1

2−p
√

log N̄p

<∞

The equality is a bit difficult to see but follows from the preceding line after rewriting the double summation as a triangular
array. To simplify, consider an infinite sequence {ai}ni=1. Then

∑∞
i=1 2−i

∑i
j=1 ai = a1 + 1

2
(a1 + a2) + 1

22 (a1 + a2 + a3) + . . ..
Rearrange to get the result. This gives us that the first condition still holds for the new nesting sequence of partitions. The
second and third conditions trivially still hold as the new partitions are finer than the previous ones.

8Recall that ∆qf is the same for all elements in Fq,i and that Fqi ⊂ F(q−1)i
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First, since |f − πq0f |Bq0f ≤ 2F1{2F >
√
naq0} one has that9

E?‖Gn(f − πq0f)Bq0f‖F ≤ 4
√
nP ?F1{2F >

√
naq0}.

The right hand size converges to zero as n→∞ by Lemma 3.8 because F has a finite second outer moment.

By applying Lemma 3.7 and noting that Bqf ≤ 1{∆qf >
√
naq}:

√
naqP∆qfBqf ≤

√
naqP∆qf1{∆qf >

√
naq} ≤ 2‖∆qf‖22 ≤ 2 2−2q.

Applying once that ∆q−1fBqf is bounded by
√
naq−1 for q > q0, multiplying and dividing by aq, and

applying the inequality from above, we obtain the that inequality that we will need below:

P
(
∆qfBqf

)2 ≤ √naq−1P∆qf1{∆qf >
√
naq} ≤ 2

aq−1

aq
2−2q.

And now applying the triangle inequality, using that |ab| =
∣∣|a|b∣∣ for a, b ∈ R:

E?
∥∥∥∥∥∥
∞∑

q=q0+1

Gn(f − πq)Bqf

∥∥∥∥∥∥
F

≤
∞∑

q=q0+1

E?
∥∥Gn∆qfBqf

∥∥
F

Now applying Lemma 3.9. Note that 1) the implicit constant in the inequality can be taken to be universal
by the nesting property of the subsets, 2) that ∆qfBqf ≤

√
naq−1, the bounds derived above, and 3) that

the supremum is taken over Nq functions at each level q:

.
∞∑

q=q0+1

aq−1 logNq + 2−q
√

2
aq−1

aq

√
logNq

Note that aq is decreasing in q (as q increases the top of the fraction is getting smaller and the bottom of
the fraction is getting larger) so that the quotient can be replaced by it’s square. Now use the definition of
aq to bound this sum:

.
∞∑

q=q0+1

2−q
√

logNq

This bound is independent of n and converges to zero as q0 →∞.

To bound the third term note that there are at most Nq functions (πq−πq−1)f10 and at most Nq−1 functions
Aq−1f . Since the partitions are nested (Fqi ⊂ Fq−1,i), the function |πqf − πq−1f |Aq−1f is bounded by
∆q−1fAq−1f ≤

√
naq−1. Also by nesting, the L2(P ) norm of πqf − πq−1f is bounded by 2−(q−1). Apply

the inequality in Lemma 3.9 to get

E?
∥∥∥∥∥∥
∞∑

q=q0+1

Gn(πq − πq−1f)Aq−1f

∥∥∥∥∥∥
F

.
∞∑

q=q0+1

aq−1 logNq + 2−q
√

logNq.

As before, this upper bound is independent of n and converges to zero as q0 →∞.

Putting this all together we get that as n, q0 →∞

E? sup
f,g∈F

|f − g| ≤ 2E?‖f − πq0f‖F −→ 0.

which allows us to apply Theorem 2.6 and establish asymptotic equicontinuity. Because the envelope has
finite second outer moment we can apply CLT to the marginals to get convergence to a tight distribution
and apply Theorem 2.5 to get weak convergence of the whole process Gn.

9Recall the definition of the “F” norm, pull out the
√
n, apply triangle inequality and note that E?PnF ≤ E?F because

(S + T )? ≤ S? + T ? for any functions S, T .
10each πq has a specific πq−1 attached to it
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Remark (Comments on Donsker Theorems). Note that the integral in the bracketing Donsker Theorem
above does not require taking the supremum over all finitely discrete probability measures Q, instead we
only deal with the underlying measure P . The idea here is the bracketing gives us more control on the
arguments.

Also, note that there are no measurability concerns for the bracketing Donsker theorem. This is because we
did not have to use symmetrization, instead relying on Lemma 3.9.

Remark (Summary: Glivenko-Cantelli vs. Donsker). Conditions for:

Glivenko-Cantelli:

• If N[ ](ε,F , L1(P )) <∞ for every ε then F is (P)-Glivenko-Cantelli.

• If F is P-measurable with envelope F satisfying P ?F < ∞ and for every M, ε > 0 we have that
logN (ε,FM , L1(Pn)) = op?(n) then F is (P)-Glivenko-Cantelli.

Donsker:

• If F has envelope F with P ?F 2 <∞ and∫ ∞
0

√
logN[ ](ε,F , L2(P )) dε <∞.

then F is Donsker.

• If F has envelop F with P ?F 2 < ∞, F2
∞ and Fδ are P-measurable for every δ and the (UEB) is

satisfied, that is ∫ ∞
0

sup
Q

√
logN (ε‖F‖Q,2,F , L2(Q)) dε <∞.

then F is Donsker.

The bracketing numbers give you pointwise control of functions between the brackets, this gives us cleaner
conditions for Glivenko-Cantelli and Donsker that depend only on the true measure. The covering number
proofs require symmetrization and then applying Fubini’s theorem, so we need measurability assumptions.
The tradeoff is that bracketing numbers are larger than covering numbers, so the conditions may be harder
to satisfy.

We have now reduced the conditions that we need for uniform convergence to conditions in terms of bracket-
ing/covering numbers. Next we will turn to verifying these conditions and applying the uniform convergence
results.

3.6 Covering Numbers

This section roughly covers section 2.6 in Van Der Vaart and Wellner.

Recall that for the covering Donsker Theorem, Theorem 3.4, we require the uniform entropy bound:∫ ∞
0

sup
Q∈Q

√
logN

(
ε‖F‖Q,2,F , L2(Q)

)
dε <∞. (UEB)

where the supremum under the integral is taken over the set of all finitely discrete probability measures Q.

If we can show that F is such that supQ logN
(
ε‖F‖Q,2,F , L2(Q)

)
.
(

1
ε

)2−δ
for some δ > 0 then we are fine

as the square root of this will integrate to a finite number. In fact, we will often be able to verify a much
stronger condition, that:

sup
Q
N
(
ε‖F‖Q,2,F , L2(Q)

)
≤ K

(
1

ε

)V
, 0 < ε < 1.
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3.6.1 VC Classes of Sets

A typical way to show that a class of sets F satisfies the (UEB) will be to show that it has a limited
“VC-Dimension”, where “VC” stands for Vapnick and Cervonenkis. What does this mean?

Let C be a collection of subsets of some set X , that is C ⊆ 2X . An arbitrary set of points {x1, . . . , xn}
possesses 2n subsets.

Definition 3.17 (Picking Out). Let A ⊂ {x1, . . . , xn}. The collection C picks out A if A = C ∩{x1, . . . , xn}
for some C ∈ C. We define the number of subsets of {x1, . . . , xn} picked out by C as

∆n(C, x1, . . . , xn) = #
{
C ∩ {x1, . . . , xn} : C ∈ C

}
(3.13)

Definition 3.18 (Shattering). A collection C shatters {x1 . . . , xn} if it can pick out all of its 2n subsets.

Definition 3.19 (VC Index). The VC-Index, V (C) is the smallest n ∈ N such that no set of size n is
shattered by C. Equivalently

V (C) = inf

{
n : max

x1,...,xn
∆n(C, x1, . . . , xn) < 2n

}
(3.14)

Definition 3.20 (VC Class). A collection C of measurable sets is called VC Class if V (C) <∞.

Remark. Notice that in the Definition of the VC Index, we require that no set of size n is shattered by
C rather than requiring that n be the smallest number such that there exits any set of size n that is not
shattered by C.

Example. Suppose C =
{

(−∞, c] : for some c ∈ R
}

. Then any set {x1} has subsets ∅ and {x1}. For ∅ we
have that ∅ ⊂ (−∞, c] ∩ {x1} for any c < x1 while for {x1} we have that {x1} ⊆ (−∞, c] ∩ {x1} for any
c ≥ x1. Thus we have that C shatters any single element subset of R.

However, take a two element subset {x1, x2} ⊂ R. Without loss of generality take x1 < x2. There are four
subsets to consider, ∅, {x1}, {x2}, {x1, x2}. We can see that there is no set C ∈ C such that C ∩ {x1, x2} =
{x2}, if we take C = (∞, c] for some c < x2 we get that C ∩{x1, x2} = {x1} whereas if we take C = (−∞, c]
for some c ≥ x2 we get that C ∩ {x1, x2} = {x1, x2}. This exhausts all sets in C.

Since {x1, x2} is arbitrary, we can conclude that the VC Index of C is two, V (C) = 2.

Example. Let C1 =
{

(a, b] : a < b for a, b ∈ R
}

. Note that this collection is larger than the collection from
the prior example. Now however, given a set {x1, x2} with x1 < x2 we can pick out {x2} with the set
(x1, x2] ∈ C1.

However, now consider a three element subset {x1, x2, x3}. Without loss of generality suppose x1 < x2 < x3.
We will try to pick out the set {x1, x3}. Consider any set C ∈ C1 such that {x1, x3} ⊂ C, a necessary
condition for {x1, x2} = C ∩ {x1, x2, x3}. The set C is of the form (a, b] for some a < x1 and b ≥ x3.
However, this means that x2 ∈ C. So, we cannot pick out {x1, x3} with C1.

Since we can pick out one and two element subsets of R with C1, but not arbitrary three element subsets,
we get that V (C1) = 3.

Lemma 3.10 (Lemma 2.6.2 VdV&W). Let {x1, . . . , xn} be arbitrary points in X and C some collection of
subsets of X . Then the total number of subsets picked out by C, ∆n(C, x1, . . . , xn) picked out by C is bounded
above by the total number of subsets of {x1, . . . , xn} shattered by C.

Proof. Without loss of generality assume that every C ∈ C is a subset of the given set of points so that
∆n(C, x1, . . . , xn) is the cardinality of C.

Call the class C hereditary if it is closed under subsetting. That is C ∈ C and B ⊂ C =⇒ B ∈ C. Each
of the sets in a hereditary collection of sets is shattered1 so that a hereditary collection shatters at least

1For any B ⊂ C, B ∈ C and B ∩ C = B.
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|C| sets and the assertion of the lemma is certainly true for hereditary collections.2 The goal now will be
to show that an arbitrary collection C can be transformed into a hereditary collection without changing its
cardinality or increasing the number of shattered sets.

Given 1 ≤ i ≤ n and C ∈ C define the set

Ti(C) =

{
C \ {xi} if C \ {xi} /∈ C
C otherwise

The map Ti(x) is injective (one-to-one) so the collections C and Ti(C) = {Ti(C), C ∈ C} have the same
cardinalities.3 Furthermore, every subset A ⊂ {x1, . . . , xn} that is shattered by Ti(C) is shattered by C. To
see this note that if xi 6∈ A then {C ∩ A} = {Ti(C) ∩ A}. Conversely if xi ∈ A and A is shattered by Ti(C)
then for every B ⊂ A there is a C ∈ C with B ∪ {xi} = Ti(C) ∩ A.4 This implies that xi ∈ Ti(C) so that
Ti(C) = C. This in turns gives that C \{xi} ∈ C since otherwise Ti would not have a fixed point at C. Thus
both B ∪ {xi} and B \ {xi} = (C \ {xi}) ∩A are picked out by C. One of these sets equals B.

So the assertion of the lemma is true for C if it is true for Ti(C). Furthermore the assertion of the lemma is
true for C if it is true for T (C) where T = T1◦T2◦· · ·◦Tn; by repeatedly applying the argument above we have
that if a set is shattered by T (C) it is shattered by C. Apply T repeatedly until the collection of sets does
not change anymore. This happens after at most

∑
C∈C |C| steps (finite) since

∑
C∈C |Ti(C)| <

∑
C∈C |C|

whenever the collections Ti(C) and C are different5. The collection D obtained in this manner has the
property that D \ {xi} ∈ D for every D ∈ D and every xi. So D is hereditary.

Corollary 3.2 (Corollary 2.6.3 VdV&W). For a VC-class of sets of index V (C) one has

max
x1,...,xn

∆n(C, x1, . . . , xn) ≤
V (C)−1∑
j=0

(
n

j

)
.

Consequently, the numbers on the left hand side grow polynomially of order at most O
(
nV (C)−1

)
as n→∞.

Proof. The RHS of the corrolary above is the number of subsets of size at most V (C)−1. A VC-class shatters
no set of V (C) points. All shattered sets are of size at most V (C) − 1. The number of shattered sets gives
an upper bound on ∆n by Lemma 3.10.

Theorem 3.6 (Theorem 2.6.4 VdV&W). There exists a universal constant K such that, for any VC-class
C of sets, any probability measure Q, any r ≥ 1 and 0 < ε < 1,

N (ε, C, Lr(Q)) ≤ KV (C)(4e)V (C)
(

1

ε

)r(V (C)−1)

(3.15)

Proof. The proof of this Theorem takes some 3 pages in VanDerVaart so I am leaving it for now. It can be
found on pages 137-139.

Remark. For practical purposes, if V (G) < ∞, then supQ∈Q logN (ε,G, L2(Q)) . log
(

1
ε

)
which will mean

that the (UEB) is satisfied.

2Taking a look at (3.13) we see that all sets picked out by C are all subsets of elements of C. Since all subsets of elements
of C are also elements of C, the number of sets picked out by C is bounded by the number of sets in C. Every element of C is
clearly shattered by C which gives the statement.

3Recall that ∆n(C, x1, . . . , xn) = |C| since by assumption (without loss of generality) every C ∈ C is a subset of the given
set of points. This holds as well for Ti(C)

4This is just because B ∪ {Xi} ⊂ A and A is shattered by Ti(C)
5We can think of repeatedly applying T as “pruning” the collection C, removing elements from sets whose subsets are not

contained in C.
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Example. Suppose G is a VC-class, that is the functions 1G are measurable for G ∈ G and V (G) < ∞.
Since this set of indicator functions is bounded by 1, this class is clearly Donsker. In the example above,
we showed that the set G = {(a, b] : a < b, a, d ∈ R} has VC-index, V (G) = 3 < ∞. By Theorem 3.6 (and
subsequently Theorem 3.4), this is a Donsker class. That is uniformly over a, b ∈ R:

1√
n

n∑
i=1

{
1[a < Xi ≤ bi]− P (a < Xi < bi)

}
 G.

for some tight element G on `∞(G).

All together, this is interesting for showing that collections of indicator functions are Donsker, but what
about arbitrary classes of functions?

3.6.2 VC Classes of Functions

Definition 3.21 (Subgraph). The subgraph of a function f : X → R is the subset of X × R given by{
(x, t) : t < f(x)

}
.

Remark. Note that the subgraph does not include the points {(x, y) : y = f(x)}

O

t

x

f(x) =
√
x

Figure 3.1: The subgraph of f : R+ → R+, x 7→
√
x is shaded in gray.

Definition 3.22 (VC Class for Functions). A collection of functions F is called a VC-subgraph class, or
just a VC-class if the collections of all subgraphs of the functions in F forms a VC-class of sets in X × R.
Let V (F) be the VC-index of the set of subgraphs of functions in F .

Just as for sets, the covering numbers of VC-classes of functions grow at a polynomial rate.

Theorem 3.7 (Theorem 2.6.7 VdV&W). Let F be a VC-class of functions with measurable envelope F .
Then for r ≥ 1 and any probability measure Q with ‖F‖Q,r > 0,

N
(
ε‖F‖Q,r,F , Lr(Q)

)
≤ KV (F) (16e)

V (F)

(
1

ε

)r(V (F)−1)

(3.16)

for a universal constant K and 0 < ε < 1.

Proof. Let C be the set of all subgraphs Cf of functions F ∈ F . That is

Cf =
{

(x, t) : t < f(x)
}

C =
{
Cf : f ∈ F

}



Page 43

By Fubini’s Theorem, Q|f−g| = (Q× λ)
(
Cf4Cg

)
where A4B = (A\B)∪(B\A) = (A∪B)\(A∩B) is the

symmetric difference of two sets.6 Renormalize Q×λ to a probability measure on the set {(x, t) : |t| ≤ F (x)}

O

t

x

f(x) =
√
x

g(x) = 1
2

√
x

Figure 3.2: The symmetric difference Cf4Cg is shaded in yellow

by defining P = (Q×λ)
2QF . Then, by the result in Theorem 3.6 we have that

N
(
ε(2QF ),F , L1(Q)

)
= N

(
ε, C, L1(P )

)
≤ KV (F)

(
4e

ε

)V (F)−1

.

By adjusting the constant K to convert (4e)V (F)−1 to a (16e)V (F) this concludes the proof for r = 1.

For r > 1 note that 2F is an envelope for F∞, a property that we have used before. Define R to be

the probability measure with density F r−1/QF r−1 with respect to Q. That is Rf̄ = Q
(
f̄ F r−1

QF r−1

)
for any

function f̄ : X → R. Then:

Q|f − g|r ≤ Q|f − g|(2F )r−1 = 2r−1R|f − g|QF r−1.

Thus the Lr(Q) distance is bounded by the distance 2(QF r−1)1/r‖f − g‖1/rR,1. This gives that

N
(
ε2‖F‖Q,r,F , Lr(Q)

)
≤ N

(
εr‖F‖R,1,F , L1(R)

)
.

which can be uniformly bounded by the result for r = 1. This gives the result after nothing that 1
εr =(

1
ε

)r
.

If the conditions of Theorem 3.7 are satisfied with V (F) <∞ then we can bound the (UEB) with∫ ∞
0

sup
Q∈Q

√
logN

(
ε‖F‖Q,2,F , L2(Q)

)
dε .

∫ 1

0

√
logN

(
ε‖F‖Q,2,F , L1(Q)

)
dε

.
∫ 1

0

√
log K̃

(
1

ε

)2(V (F)−1)

dε <∞

where the first step is using the fact that if ε > 1 we only need one ball of radius ε‖F‖Q,2 to cover F under
Q and then noting that the covering numbers under L1 differ from the covering numbers under L2 by a
bounded constant.

6It is useful to recall that

Cf ∪ Cg =
{

(x, t) : t < f(x) or t < g(x)
}

Cf ∩ Cg =
{

(x, t) : t < f(x) and t < g(x)
}

and also that Q is a probability measure over X whereas λ is a measure over R. Both Cf and Cg are subsets of X × R.



Page 44

Example. Suppose F =
{∑K

j=1 βjφj(x), (β1, . . . , βK) ∈ RK
}

. Then V (F) ≤ K + 2. How? Recall that we

are considering the VC-index of the collection

C =
{{

(x, t) : t ≤ β′φ(x)
}

: β ∈ RK
}
⊆ 2X×R.

Pick (x1, t1), . . . , (xk+2, tk+2) distinct points in X × R. Then for any f ∈ F :
f (x1)

...
f (xn+2)

 = β1


φ1 (x1)

...
φ1 (xn+2)

+ · · ·+ βK


φK (x1)

...
φK (xn+2)

 .
so
(
f(x1), . . . , f(xK)

)
is in a subspace of RK+2 of dimension K for any f ∈ F . Similarly, we can show that

f(x)− t is in a subspace of dimension K + 1 for any fixed f ∈ F and t1, . . . , tK+2.

To show that V (F) ≤ K + 2 we want to show that
{

(x1, t1) , . . . , (xK+2, tK+2)
}

cannot be shattered by

subgraphs of F . That is we want a subset A ⊆
{

(x1, t1) , . . . , (xK+2, tK+2

}
such that 6 ∃f ∈ F with

A =
{

(x1, t1) , . . . , (xK+2, tK+2)
}
∩
{

(x, t) : t < f(x)
}
.

Since for any fixed f ∈ F , t1, . . . , tK+2, f(x1)− t1, . . . , f(xK+2)− tK+2) is in a subspace of dimension K + 1
of RK+2 for any x1, . . . , xK+2, there exists a vector a 6= 0 orthogonal to this subspace such that

K+2∑
j=1

aj(f(xj)− tj) = 0 =⇒
∑
aj>0

aj
(
f(xj)− tj

)
=
∑
aj≤0

(−aj)(f(xj)− tj).

Pick the indices corresponding to the positive aj > 0 values (the indices on the LHS after the impli-
cation) and consider A = {(xj , tj) : aj > 0}. Since a 6= 0 we know this set is non-empty. If A =
{(x1, t1), . . . , (xK+2, tK+@)} ∩ {(x, t) : t < f(x)} for some f ∈ F then∑

aj>0

ai(f(xj)− tj) > 0 ≥
∑
aj≤0

(−aj)(f(xj)− tj).

which is a contradiction as these two are equal as demonstrated above. Thus V (F) ≤ K + 2. However,
notice that unless the functions φj(x) are all uniformly equal to 0, the class F does not have an envelope
with P ?F < ∞, so it is neither Glivenko-Cantelli nor Donsker unless we restrict the parameter space (the
range of β1, . . . , βK). It is useful to consider the following sanity check:

sup
β1,...,βK

∣∣∣∣∣∣ 1n
n∑
i=1

(
β1φ1(xi) + · · ·+ βkφK(xi)

)
− E[. . . ]

∣∣∣∣∣∣ =∞.

This example can be generalized and outlines the proof for the next lemma

Lemma 3.11 (VC Dimension of Finite Dimensional Vector Spaces). Any finite dimensional vector space F
of measurable functions f : X → R is a VC function class with V (F) ≤ dim(F) + 2.

Proof. Follows the example above. Can also be found as Lemma 2.6.16 in VanDerVaart and Wellner.

Another examples of a VC function class is given below:

Lemma 3.12 (VC Dimension of Translates). Let ψ : R → R be a monotonic function and let F be the set
of all translates of ψ, F =

{
ψ(x− h) : h ∈ R

}
. Then V (F) = 2.

Proof. This follows similarly from the example above where we considered the VC-dimension of C ={
(−∞, b) : a < b

}
. Without loss of generality suppose that ψ is decreasing and denote ψh = ψ(x − h).

The subgraphs of ψh are nested in that if h > h′, Ch′ ⊆ Ch since if t < ψh′(x) then t < ψh(x). Take any
two element subset of R×R: {(x1, t1), (x2, t2)}. By considering the single element subsets of this set we see
that we cannot shatter this set without breaking the nesting of the subgraphs so V (F) = 2.
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3.7 Bracketing Numbers

This discussion roughly follows Van Der Vaart and Wellner Chapter 2.7. Results on bracketing numbers rely
on approximation theory.

Definition 3.23 (Differential Operator). For a vector K = (K1, . . . ,Kd) ∈ Nd let |K| =
∑d
j=1Kj . For any

|K| times differentiable function f : X → R define

DKf(x) =
∂|K|

∂xK1
1 ∂xK2

2 · · · ∂x
Kd
d

f(x).

Definition 3.24 (Differential Norm). For any α > 0 let α = 1 ∨ bαc, the smallest positive integer less than
α. Then, for a function f : X → R let

‖f‖α = max
|k|≤α

sup
x

∣∣∣D|K|f(x)
∣∣∣+ max
|K|=α

sup
x,y∈X◦

∣∣DKf(x)−DKf(y)
∣∣

‖x− y‖α−α
.

Let CαM (X ) be the set of all continuous function f : X → R with ‖f‖α ≤M .

Example (Differential Norm). Let X = R. Then, ‖f‖2 ≤M means that

• (Bounded Function): supX
∣∣f(x)

∣∣ ≤M
• (Bounded Derivative): supX

∣∣f ′(x)
∣∣ ≤M

• (Lipschitz Condition): |f ′(x)− f ′(y)| ≤ |x− y|M

Example (Differential Norm). Let X = R. Then, ‖f‖0.5 ≤M means that

• (Bounded Function): supX
∣∣f(x)

∣∣ ≤M
• (Hölder Condition):

∣∣f(x)− f(y)
∣∣ ≤√|x− y|

Theorem 3.8 (Theorem 2.7.1 VdV&W). Let X be a bounded, convex subset of Rd with nonempty interior.
Then, there exists a constant K depending only on α and d such that

logN
(
ε, Cα1 (X ), ‖ · ‖∞

)
≤ Kλ(X 1)

(
1

ε

)d/α
,

where λ denotes Lebesgue measure and X 1 = {x : d(x,X ) < 1}.

Corollary 3.3 (Bracketing Numbers for α-smooth Functions). Let X be a bounded, convex subset of Rd
with nonempty interior. There exists a constant K depending only on α, diam(X ) and d such that

logN[ ]

(
ε, Cα1 (X ), Lr(Q)

)
≤ K

(
1

ε

)d/α
.

Proof. Let f1, . . . , fp be the centers of ‖ · ‖∞ balls of radius ε that cover Cα1 (X ). The brackets [fi − ε, fi + ε]
cover Cα1 . Each bracket has Lr(Q) size at most 2ε, for any r. Apply Theorem 3.8.

Remark (Relaxing the Bound in Cα1 ). Suppose we want to apply the results of Corollary 3.3 but to the
slightly larger set CαM (X ). Pick an ε, ‖ · ‖∞ ball cover of Cα1 (X ) with centers at g1, . . . , gk and consider
Mg1, . . . ,Mgk ∈ CαM (X ). For every f ∈ CαM (X ), ‖f −Mgi‖∞ = M‖f/M − gi‖ < εM for some 1 ≤ i ≤ k so
Mg1, . . . ,Mgk is an εM cover of CαM (X ). Applying Corollary 3.3 gives

logN
(
ε, CαM (X ), ‖ · ‖∞

)
≤ logN

(
ε/M,Cα1 (X ), ‖ · ‖∞

)
.

(
1

ε/M

)d/α
.

(
1

ε

)d/α
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Example (Glivenko-Cantelli). To apply the bracketing Glivenko-Cantelli Theorem, Theorem 3.2, we require
that N[ ](ε,F , L1(P )) < ∞ for all ε > 0. Hence for F = CαM (X ) =

{
f : X → R : ‖f‖α ≤M,α > 0

}
and X

bounded and convex, by Corollary 3.3 that this is finite for any ε > 0.

Example (Donsker). For the bracketing Donsker Theorem, Theorem 3.5, we required that∫ ∞
0

√
logN[ ](ε,F , L2(P )) dε <∞.

Let X be a bounded, convex subset of Rd and consider Cαm(X ). Then by Corollary 3.3:∫ ∞
0

√
logN[ ](ε, Cαm(X ), L2(P )) dε =

∫ 2M

0

√
logN[ ](ε, C

α
M (X ), L2(P )) dε

.
∫ 2M

0

(
1

ε

) d
2α

So long as d
2α < 1 or (equivalently) d < 2α, this will be finite and the class will be Donsker. If d = 1 then

this holds for α > 1/2 so the set of all bounded Lipschitz function is Donsker. If d = 2 then this holds
for α > 1 so the set of all level functions with bounded derivatives and Lipschitz first order derivatives is
bounded. In general in higher dimensions we need to add smoothness.

Theorem 3.9 (Monotone Donsker Class). The class Fm of monotone functions f : R → [0, 1] satisfies for
every r ≥ 1:

logN[ ](ε,F , Lr(Q)) ≤ K
(

1

ε

)
.

For a constant K depending only on r and every Q.

Remark. The above gives us that the class of monotone functions into [0, 1] is Glivenko-Cantelli and
Donsker. This gives us another way of showing that the empirical CDF is Donsker as we can take

F ind =
{
1[x ≤ b] : b ∈ R

}
.

Since F ind ⊂ Fm, F ind is Donsker by Theorem 3.9.

We now turn to some examples to demonstrate the usefulness of the above results and demonstrate some
other useful relationships.

Example (Classes of Differences). Let G = {f − g : f, g ∈ F}. How do we find N (ε,G, ‖ ·‖)?1 Let f1, . . . , fk
be a minimal set of ε/2 balls in ‖ · ‖ that cover F .2. Form the functions

f1 − f1 f2 − f1 · · · fk − f1

f1 − f2 f2 − f2 · · · fk − f2

...
. . .

. . .
...

f1 − fK f2 − fk · · · fk − fk


Label these
g1, . . . , gk2

Then g1, . . . , gk2 is an ε-cover for G. If φ = f − g ∈ G then there is a g` function in {g1, .., gk2} such that

‖φ− g`‖ = ‖f − g − (fi − fj)‖ ≤ ‖f − fi‖+ ‖g − fj‖ < ε

So that N (ε,G, ‖ · ‖) ≤ N 2(ε/2,F , ‖ · ‖).

Example (Power Rules). Recall the definition of ‖f‖α (Definition 3.24). Suppose we are interested in
F = {f2 : ‖f‖α ≤M}. If g1, g2 ∈ F then g1 = f2

1 and g2 = f2
2 for ‖f1‖α ≤M and ‖f2‖α ≤M . Then

‖g1 − g2‖∞ = ‖f2
1 − f2

2 ‖∞ = ‖(f1 − f2)(f1 + f2)‖∞ ≤ ‖f1 − f2‖∞‖f1 + f2‖∞ ≤ 2M‖f1 − f2‖∞

Therefore, if g1, . . . , g
2
K provide an ε/2M cover of CαM under ‖ · ‖∞, then g1, . . . , g

2
K provide an ε cover of F .

This argument was also used in the proof of Theorem 3.4.

1Recall that we used an argument of this nature in the proof of Theorem 3.4.
2That is take k = N (ε/2,F , ‖ · ‖)
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Remark. In the above example it is important that the functions are bounded. Otherwise, we may run
into trouble when showing Donsker properties as the fourth moment of the envelope may not be finite, even
if the second moment is.

An example of when we are all ok is when the functions are Lipschitz.

Theorem 3.10 (Lipschitz Combination of Donsker Classes). Let F1, . . . ,Fk be Donsker classes with en-
velopes F1, . . . , Fk and ϕ : RK → R a Lipschitz function, i.e ϕ is such that∣∣ϕ(x1, . . . , xk)− ϕ(y1, . . . , yk)

∣∣ . ‖x− y‖2.
Then if E

[
φ2(F1(x), . . . , Fk(x))

]
<∞, the class

G =
{
φ(f1, . . . , fk) : fi ∈ Fi

}
.

is Donsker.

Example (Specification Testing). Suppose we estimate the model

Y = f(X, θ) + ε with E[ε|X] = 0.

But, after we estimate the model, we want to test whether the model is correctly specified. That is we want
to test

H0 : Pr
(
E[Y |X = x] = f(x, θ)

)
= 1, for some θ ∈ Θ

H1 : Pr
(
E[Y |X = x] = f(x, θ)

)
< 1, for all θ ∈ Θ

First Approach: If f(x, θ0) = E[Y |X = x], then E
[
(Y − f(X, θ0)ϕ(X)

]
= 0 for all (integrable) ϕ(X). A first

guess at a test would be to pick a set of functions ϕ1, . . . , ϕk and test E[(Yi − f(X, θ0))ϕj(X)] = 0 for all j.
A feasible way of doing so would be to stack ϕ = (ϕ1, . . . , ϕk)′ and use the test statistic

F =
(
Gn(Yi − f(Xi, θ̂)ϕ(Xi)

)′
WGn(Yi − f(Xi, θ̂)ϕ(Xi).

For an appropriate choice of W , F will be distributed χ2
k under the null hypothesis. The problem is that

this test does not exhaust all the moment restrictions and so will not in general be consistent.

Second Approach: Insight from Bierens: How do we use an infinite number of moments?

Lemma 3.13 (Bierens 1990). Let V be a random scalar with E[|V |] <∞ and X be a bounded random vector
in RK such that Pr(E[V |X] = 0) < 1. Then

S =

{
t ∈ RK : E

[
vet
′X
]

= 0

}
is a set of Lebesgue measure zero.3

What does this mean? If E[Y |X = x] = f(x, θ0) then E[(Y − f(X, θ0)et
′X ] = 0 for (almost) all t ∈ T ,

which is some appropriately chosen compact set with positive Lebesgue measure. On the other hand, if
E[Y |X] 6= f(x, θ0) then E[(Y − f(X, θ0)et

′X ] 6= 0 for “most” t ∈ T .

The goal will be to build a test statistic based on this observation. The requirement that X is bounded is
not restrictive as E[V |X] = E[V | tanh(X)].

Test Statistic: Is E[(Y − f(X, θ0) exp(t′X)] = 0 for all t ∈ T? Take

Tn = max
T

∣∣∣Gn(Y − f(Xi, θ̂))e
t′Xi

∣∣∣ .
Under the null hypothesis Tn should be well behaved whereas under the alternative it may diverge. Analysis
is in a few steps.

3This results is generalized in Stinchcombe and White (1998)
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Step 1: Deal with the difference between θ̂ and θ0.

Suppose we estimate θ̂ via nonlinear least squares. That is

θ̂ = arg min
Θ

1

n

n∑
i=1

(
yi − f(xi, θ)

)2
.

Using the first order condition and a (first order) Taylor expansion we see that

√
n
(
θ̂ − θ0

)
=

[
Pn
∂f(Xi, θ̂)

∂θ

∂f(Xi, θ̄)

∂θ′

]−1

Gn
∂f(Xi, θ̂)

∂θ
(Yi − f(Xi, θ0)).

Taking A = E
[
∂f(Xi,θ̂)

∂θ
∂f(Xi,θ̄)
∂θ′

]
allows us to rewrite the above as

√
n(θ̂ − θ0) = A−1Gn

∂f(Xi, θ0)

∂θ
(Yi − f(Xi, θ0)) + op(1) (S1)

where we note that there is a uniform consideration being hidden here in dealing with θ̄ and we are assuming
that θ̂ is consistent (minor).

Step 2: Study the process indexed by t.

Gn(Yi − f(Xi, θ̂))e
t′Xi = Gn(Yi − f(Xi, θ0))et

′Xi︸ ︷︷ ︸
A

+Gn(f(Xi, θ0)− f(Xi, θ̂))e
t′Xi︸ ︷︷ ︸

B

.

The first term on the right hand side here looks manageable, but what about the second? We will apply the
delta method. To do so note that by first order Taylor expansion in (S1):(

Pn
∂f(xi, θ̄)

∂θ
et
′xi

)
√
n(θ0 − θ̂) ≈

(
Pn
∂f(Xi, θ̄)

∂θ
(Yi − f(Xi, θ0))

)′
A−1Gn

∂f(Xi, θ0)

∂θ
(Yi − f(Xi, θ0)).

If we have

sup
t∈T,θ∈Θ

∣∣∣∣Pn ∂f(Xi, θ)

∂θ
et
′Xi − E

∂f(Xi, θ)

∂θ
et
′Xi︸ ︷︷ ︸

:=b(t,θ)

∣∣∣∣ = op(1).

and an appropriate continuity condition, then:

Gn(f(Xi, θ0)− f(Xi, θ̂))e
t′Xi = b′(t, θ)A−1Gn

∂f(Xi, θ0)

∂θ
(f(Xi, θ0)− Yi) + op(1).

where the op(1) is uniform in t, i.e.

sup
T

∣∣∣∣Gn(f(Xi, θ0)− f(Xi, θ̂))e
t′Xi − b′(t, θ0)A−1Gn

∂f(Xi, θ0)

∂θ

∣∣∣∣ = op(1).

Then, putting A+B together, we have that

Gn(Yi − f(Xi, θ̂)e
t′Xi = Gn(Yi − f(Xi, θ̂))

[
et
′Xi − b′(t, θ0)A−1 ∂f(Xi, θ0)

∂θ0

]
+ op(1). (S2)

Step 3: Find the limiting distribution in L∞(T ): Let

F =

{
(y − f(x, θ0)

[
et
′x − b′(t, θ0)A−1 ∂f(x, θ0)

∂θ

]
: t ∈ T

}
.
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we want to show that F is Donsker. Let f = ft, f̃ = ft̃ for t, t̃ ∈ T and f, f̃ ∈ F . Then

|f(x)− f̃(x)| ≤ |y − f(x, θ0)||et
′x − et̃

′x|+ |y − f(x, θ0|‖A−1 ∂f(x, θ0)

∂θ
‖‖b(t, θ0)− b(t̃, θ0)‖

≤ |y − f(x, θ0)|et̄
′x|x′(t− t̃)|+ |y − f(x, θ0)|‖A−1 ∂f(x, θ0)

∂θ
‖‖E∂f(xi, θ0)

∂θ
(et
′x − et̃

′x)‖

. |y − f(x, θ0)|‖t− t̃‖+ |y − f(x, θ0)|‖E|∂f(xi, θ0)

∂θ0
|‖‖t− t̃‖

. |y − f(x, θ0)|

1 +

∥∥∥∥∥E
∣∣∣∣∂f(xi, θ

∂θ

∣∣∣∣
∥∥∥∥∥


︸ ︷︷ ︸
F (x,y)

‖t− t̃‖

so F is Lipschitz in t ∈ T . We can show that

N[ ](2ε‖F‖P,2,F , L2(P )) ≤ N (ε, T, ‖ · ‖) ≤
(
d · diam(T )

ε

)d
.

so the uniform entropy condition needed for the bracketing Donsker Theorem, Theorem 3.5 is easily satisfied∫ ∞
0

√
logN[ ](ε,F , L2(P )) dε <∞.

We conclude that
Gn(Yi − f(Xi, θ̂))e

t′Xi  G(T ). (S3)

for a tight Gaussian process on L∞(T ).

Step 4: Find the asymptotic distribution of the test statistic Tn. By continuous mapping theorem

Tn  max
T
‖G(t)‖.

However, using the result in (S3) we can generate any number of test statistics. For example, consider

T̃n =

∫
T

Pn(Yi − f(Xi, θ̂)e
t′Xi)2 dt 

∫
G2(t) dt = ‖G‖2P,2.

Step 5: Consider the behavior under the alternative.

If the process is Glivenko-Cantelli even under the alternative, then

sup
T

∣∣∣Pn(Yi − f(Xi, θ̂))e
t′Xi − E(Yi − f(Xi, θ0))et

′Xi
∣∣∣ ≤ sup

T

∣∣∣E(f(Xi, θ0)− f(Xi, θ̂))e
t′Xi

∣∣∣+ op(1)

.
∣∣∣E|f(Xi, θ0)− f(Xi, θ̂))

∣∣∣ = op(1)

So the function of t will converge uniformly in L∞(T )

Pn(Yi − f(Xi, θ̂))e
t′Xi →p E(Yi − f(Xi, θ0)et

′Xi .

By continous mapping theorem,

Tn =
√
nmax

T
‖Pn(Yi − f(Xi, θ̂))e

t′Xi‖ →p ∞.

so the test is consistent.
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4 Delta Method and Applications to Statistics

We now look to apply the results of Section 3 to the Delta Method and other statistical problems.

4.1 Multiplier Central Limit Theorems

This section follows Chapter 2.9 in Van der Vaart and Wellner.

With the notation Zi = δXi − P , the empirical central limit theorem can be written

1√
n

n∑
i=1

Zi  G.

where G is a tight stochastic process on `∞(F). In contrast, given i.i.d real-valued random variables ξ1, . . . , ξn
which are independent of Z1, . . . , Zn, a multiplier central limit theorem would assert that

1√
n

n∑
i=1

ξiZi  G.

A deeper result is a conditional multiplier central limit theorem, which asserts that for almost every sequence
Z1, Z2, . . .

1√
n

n∑
i=1

ξiZi  G.

To establish these results we will make use of symmetrization results of the sort seen in Lemma 3.6. First
define the “2-1” norm:1

Definition 4.1 (2-1 Norm). For a random variable X : Ω→ R define

‖X‖2,1 =

∫ ∞
0

√
Pr
(
|X| > x

)
dx.

Lemma 4.1 (Generalized Symmetrization). Let Z1, . . . , Zn be independent stochastic processes with mean
zero and let ε1, ε2, . . . be independently generated Rademacher random variables.2 Then:

E?Φ
(

1

2

∥∥∥∥ n∑
i=1

εiZi

∥∥∥∥
F

)
≤ E?

(∥∥ n∑
i=1

Zi
∥∥
F

)
≤ E?

(
2

∥∥∥∥ n∑
i=1

εi(Zi − `i)
∥∥∥∥
F

)
.

for every nondecreasing, convex φ : R→ R and arbitrary functions `i : F → R.

Lemma 4.2 (Donkser Implication). Let Z1, Z2, . . . be i.i.d stochastic processes such that
√
n
∑n
i=1 Zi con-

verges weakly in `∞(F) to a tight Gaussian process. Then

lim
x→∞

x2 sup
n

P?
 1√

n

∥∥∥∥ n∑
i=1

Zi

∥∥∥∥
F
> x

 = 0.

In particular, the random variable ‖Z1‖?F possesses a weak second moment.

Lemma 4.3 (Alternative Weak Convergence Characterizations). Let Z1, Z2, . . . be i.i.d stochastic processes,
linear in f . Set ρZ(f, g) = VarZ (f − g) and Fδ =

{
f − g : ρZ(f, g) < δ

}
. Then the following statements are

equivalent and imply that the sequence E?‖n−1/2
∑n
i=1 Zi‖rF converges to E‖G‖rF for every 0 < r < 2:

1. n−1/2
∑n
i=1 Zi converges weakly to a tight limit in `∞(F);

1I have no idea what this is actually called.
2Can basically just think of an independent stochastic process as independent data. Each data point represents a random

functional on F (evaluate each function f ∈ F at Zi).
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2. (F , ρZ) is totally bounded3 and ‖n−1/2
∑n
i=1 Zi‖Fδn →p? 0 for every δn ↓ 0;

3. (F , ρZ) is totally bounded and E?‖n−1/2
∑n
i=1 Zi‖Fδn → 0.

Lemma 4.4 (Multiplier Inequalities). Let Z1, . . . , Zn be i.i.d stochastic processes with E?‖Zi‖F <∞ inde-
pendent of the Rademacher random variables ε1, . . . , εn. Then, for every i.i.d sample ξ1, . . . , ξn of mean-zero
symmetric random variables independent of Z1, . . . , Zn and any 1 ≤ n0 ≤ n:

‖ξ‖1E?
∥∥∥∥ 1√

n

n∑
i=1

εiZi

∥∥∥∥
F
≤ E?

∥∥∥∥ 1√
n

n∑
i=1

ξiZi

∥∥∥∥
F

≤ (n0 − 1)E?‖Z1‖FE max
1≤i≤n

|ξi|√
n

+ ‖ξ‖2,1 max
n0≤k≤n

E?
∥∥∥∥ 1√

k

k∑
i=n0

εiZi

∥∥∥∥
F

These lemmas are used to show the following theorem:

Theorem 4.1 (Unconditional Multiplier Central Limit Theorem). Let F be a class of measurable functions.
Let ξ1, . . . , ξn be i.i.d symmetric random variables with mean zero, variance one, and ‖ξ‖2,1 <∞, independent
of X1, . . . , Xn. Then the sequence n−1/2

∑n
i=1 ξ1(δXi − P ) converges to a tight limiting process in `∞(F) if

and only if F is Donsker.

Proof. Since we can replace any f ∈ F with f − Pf without changing the value of either the original or
multiplier empirical process, it can be assumed without loss of generality that Pf = 0 for every f . Marginal
convergence of both sequences is equivalent to F ⊂ L2(P ). In light of Theorem 2.5 and Theorem 2.6, it
suffices to show that the asymptotic equicontinuity results for the empirical and multiplier processes are
equivalent.

If F is Donsker then Pr? (F > x) = o(x−2) by Lemma 4.2. By the same lemma, convergence of the multiplier
process to a tight limit implies that Pr?

(
|ξF | > x

)
= o(x−2). In particular, P?F <∞ in both cases.

Since ‖ξ‖2,1 < ∞ implies the existence of a second moment, we have that E? max1≤i≤n |ξi|/
√
n → 0 by

Markov’s Inequality. Applying Lemma 4.4 gives

‖ξ‖1 lim sup
n→∞

E?
∥∥∥∥ 1√

n

n∑
i=1

εiZi

∥∥∥∥
Fδ

≤ lim sup
n→∞

E?
∥∥∥∥ 1√

n

n∑
i=1

ξiZi

∥∥∥∥
Fδ

≤ ‖ξ‖2,1 sup
n0≤k

E?
∥∥∥∥ 1√

k

k∑
i=1

εiZi

∥∥∥∥
Fδ

for every n0 and δ > 0. By Lemma 4.1 we can remove the Rademacher variables εi in this statement
at the cost of changing the constants. This gives us that E?‖n−1/2

∑n
i=1 Zi‖Fδn → 0 if and only if

E?‖n−1/2
∑n
i=1 ξiZi‖Fδn → 0. By Lemma 4.3 this is equivalent to asymptotic equicontuity and weak con-

vergence.

Corollary 4.1 (Unconditional Multiplier Central Limit Theorem). Let F be Donsker with ‖P‖F <∞. Let
ξ1, . . . , ξn be i.i.d random variables with mean µ, variance σ2 and ‖ξi‖1,2 < ∞ generated independently of
X1, . . . , Xn. Then

1√
n

n∑
i=1

(ξiδXi − µP ) µG + σG′ + σZP.

where G and G′ are independent (tight) processes on `∞(F) and are both independent of Z ∼ N(0, 1). The
limiting process µG+σG′+σZP is a mean zero Gaussian process4 and covariance function (σ2 +µ2)Pfg−
µ2(Pf)(Pg).

3See Definition 1.17.
4Mean Zero means that (µG + σG + σZP )f = 0 for all f ∈ P , Gaussian means that the marginals are normally distributed.
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We now want to show a conditional version of this result. That is, we want to show that we have weak
convergence of the multiplier central limit theorem for almost all sequences Z1, . . . , Zn.5 For finite F , this
sort of result is a simple consequence of the Lindeberg central limit theorem. Before getting into it, it is useful
to recall the central limit theorem as it applies to independent, but not necessarily identically distributed,
data.

Theorem 4.2 (Lindeberg Central Limit Theorem). Suppose that X1, X2, . . . is a sequence of independent
random vectors in Rkwith E[Xi] = µi. Define Vn = 1

n

∑n
i=1 Var(Xi) and suppose the following Lindeberg

Condition is satisfied:

lim
n→∞

1

n

n∑
i=1

E
[
‖Xi − µi‖2 1{‖Xi − µi‖ > ε

√
n}
]

= 0, ∀ε > 0 (LC)

Then

V −1/2
n

1√
n

n∑
i=1

(Xi − µi) N (0, Ik) .

Lemma 4.5 (Conditional Multiplier CLT for Finite Classes). Let Z1, Z2, . . . be i.i.d random vectors with
EZi = 0 and E‖Zi‖2 < ∞ independent of the i.i.d sequence ξ1, ξ2, . . . with Eξi = 0 and Eξ2

i = 1. Then,
conditionally on Z1, Z2, . . . ,

1√
n

n∑
i=1

ξiZi  N
(
0,Var(Z1)

)
,

for almost every sequence Z1, Z2, . . .

Proof. Treating Z1, Z2, . . . as just a stream of constant vectors, by the Lindeberg Central Limit Theorem,
the statement is true for every sequence Z1, Z2, . . . such that, for every ε > 0,

1

n

n∑
i=1

ZiZ
′
i → Var(Z1) and

1

n

n∑
i=1

‖Zi‖2Eξ
[
ξ2
i

{
|ξi|‖Zi‖ > ε

√
n
}]
.

By Kolmogrov Strong Law of Large Numbers, the first statement is true for almost all all sequences {Zi}∞i=1.
A finite second moment E‖Zi‖2 < ∞, implies that max1≤i≤n ‖Zi‖/

√
n → 0 for almost all sequences, which

gives that the second statement holds for almost all sequences {Zi}∞i=1. Under a probability measure, the
intersection of two (measurable) sets with measure 1 also has measure 1.

Lemma 4.5 provides the weak convergence of marginals in the multiplier processes. What remains is to show
some version of asymptotic equicontinuity (Theorem 2.6 or 2.7) to show weak convergence in `∞(F).

Let BL1 be the set of all bounded Lipschitz functions. That is the set of all functions h : `∞(F) → [0, 1]
such that |h(z1)− h(z2) ≤ ‖z1− z2‖F for every z1, z2. Using the bounded Lipschitz functions, we can define
a metric (the bounded Lipschitz metric) between two distribtutions on a space D.

dBL(L1, L2) = sup
f∈BL1

∣∣∣∣ inf f dL1 −
∫
f dL2

∣∣∣∣.
It turns out that weak convergence is equivalent to convergence in the bounded Lipschitz metric.

Theorem 4.3 (Weak Convergence and the Bounded Lipschitz Metric). Weak convergence of separable
(Definition 3.10) Borel probability measures on a metric space D corresponds to convergence in a topology
that is metrizable by the bounded Lipschitz metric.

The following theorems (presented without proof) gives conditions for convergence of the multiplier central
limit theorem. First the other probability version is given under the same conditions as Theorem 4.1 then
the almost sure version is given under only slightly stronger conditions.

5And for this to be useful for bootstrap, we’d like the weak limit to be the same as the (non multiplier) empirical process.
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Theorem 4.4 (Conditional Multiplier Central Limit Theorem). Let F be a class of measurable functions.
Let ξ1, . . . , ξn be i.i.d random variables with mean zero, variance one and ‖ξ‖2,1 < ∞, independent of
X1, . . . , Xn. Let G′n = n1/2

∑n
i=1 ξi (δXi − p). Then the following assertions are equivalent:

1. F is Donsker;

2. suph∈BL1

∣∣Eξh(G′n)− Eh(G)
∣∣ → 0 in outer probability and the sequence G′n is asymptotically measur-

able.

Theorem 4.5 (Conditional Mulitplier Central Limit Theorem). Let F be a class of measurable functions. Let
ξ1, . . . , ξn be i,i.d random variables with mean zero, variance 1, and ‖ξ‖2,1 <∞, independent of X1, . . . , Xn.
Define the multiplier process G′n = n−1/2

∑n
i=1 ξi(δXi − P ). Then the following assertions are equivalent:

1. F is Donsker with Gn  G and P ?‖f − Pf‖2F <∞;

2. suph∈BL1

∣∣Eξh(G′n)− Eh(G)
∣∣→ 0 outer almost surely and the sequence Eξh(G′n)?−Eξh(G)? converges

to zero almost surely for every h ∈ BL1.

Here h(G′n)? and h(G′n)? denote measurable majorants and minorants with respect to (ξ1, . . . , ξn, X1, . . . , Xn)
jointly.

4.2 The Emprirical Bootstrap

Section 4.1 gives results that are useful for establishing the consistency of the multiplier bootstrap. We now
quickly describe the empirical bootstrap and give some results. Let Pn be the empirical measure of an i.i.d
sample X1, . . . , Xn from a probability measure P . Given the sample values, let X̂1, . . . , X̂n be an i.i.d sample
from Pn. The bootstrap empirical distribution is the empirical measure P̂n = n−1

∑n
i=1 δX̂i and the bootstrap

empirical process Ĝn is given

Ĝn =
√
n
(
P̂n − Pn

)
=

1√
n

n∑
i=1

(Mni − 1) δXi .

where Mni is the number of times that Xi is redrawn from the original samples. We can also define a
bootstrap empirical process where we draw k bootstrap values, X̂1, . . . , X̂k. The corresponding bootstrap
empirical process is

Ĝn,k =
√
k
(
P̂k − Pn

)
=

1√
k

n∑
i=1

(
Mki −

k

n

)
δXi .

In either case, it is important that the vector (Mk1, . . . ,Mkn) is independent of X1, . . . , Xn, that is multi-
nomially distributed with parameters k and probabilities 1

n , . . . ,
1
n for any random sample of size n.

Let EM denote the expectation with respect to the distribution of (Mk1, . . .Mkn). In light of Theorem 4.3
which equates weak convergence of a sequence of probability measures to convergence in the bounded Lips-
chitz metric, the following theorem establishes the consistency of the bootstrap.

Theorem 4.6 (Consistency of the Empirical Bootstrap). Let F be a Donsker class of measurable functions
such that Fδ is measurable for every δ > 0. Then

sup
h∈BL1

∣∣∣EMh(Ĝn,kn)− Eh(G)
∣∣∣ P?→ 0.

as n→∞ for any sequence kn →∞. Furthermore the sequence EMh(Ĝn,kn)? − EMh(Ĝn,kn)? converges to
zero in probability for every h ∈ BL1. If P?‖f−Pf‖2F <∞, then the convergence is also outer almost surely.

4.3 Delta Method

We now cover the standard Delta Method (for “fully differentiable” functions). First we want to define some
more general notions of differentiability.
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4.3.1 Differentiability

Recall that a function f : R→ R is differentiable at a point x0 if the limit

lim
h→0

f(x0 + h)− f(x)

h
.

exists. In this case we call the value of the limit the derivative of f at x0 and denote this as f ′(x0). The
derivative is useful as it gives a linear approximation of f in a neighborhood of x0, that is the derivative can
instead be written as a scalar f ′(x0) such that

lim
h→0

|f(x+ h)− f(x)− f ′(x)h|
h

= 0.

or, more familiarly, f(x + h) − f(x) = f ′(x)h + o(h). This linear approximation property is the useful bit
that we will use in econometrics, so we want notions of derivatives in general spaces to reflect this.

Example. Suppose
√
n
(
θ̂ − θ0

)
L→ N(0, σ2). We want to get the asymptotic distribution of θ̂2 − θ2

0. We’ll

use the derivative of f(x) = x2; f ′(x) = 2x evaluated at θ0 to say that

√
n
(
θ̂2 − θ2

0

)
= 2θ0

√
n
(
θ̂ − θ0

)
+ op(1),

by taking h = θ̂ − θ0. Now note that we know the distribution of 2θ0
√
n
(
θ̂ − θ0

)
L→ N(0, 4θ − 02σ2). We

have leveraged the linearity property.

Let’s start by generalizing this property to functions in Rk. This will allow us to differentiate between fully
differentiable vs directionally differentiable functions, an important distinction later on. All the definitions
below will reflect the linearity property that we desire.

Definition 4.2 (Differentiabiltiy in Rk). A function f : Rk → Rm is differentiable at x0 ∈ Rk if there exists
a linear transformation f ′(x0) : Rk → Rm such that1

lim
h→0

‖f(x+ h)− f(x)− f ′(x)h‖
‖h‖

= 0. (4.1)

Note that this is very similar to our notion of differentiability from before. Let’s see how this contrasts
with our familiar notion of partial differentiability and consider a function that has a gradient (i.e partial
derivatives in the standard unit vector directions) but that we would not consider fully differentiable according
to Definition 4.2.

Example (Directionally but not Fully Differentiable). Consider the function f : Rk → R given by:

f(x, y) =

{
x2

x+y if (x, y) 6= (, 0)

0 if (x, y) = (0, 0)
.

Let’s consider the partial derivatives at (0, 0). Note that f(x, 0) = x and f(0, y) = 0 so that

∂f

∂x
(0, 0) = 1 and

∂f

∂y
(0, 0) = 0 =⇒ ∇f(0, 0) =

[
1 0

]
.

We might be tempted then to say that the gradient ∇f(0, 0) satisfies the requirements of the linear map
f ′(0, 0) in Definition 4.2. However, let’s consider approaching (0, 0) in the direction (h, h) for a real number
h→ 0. Note that f(h, h) = h

2 . Let’s consider the limit in this direction

lim
h→0

|f(h, h)− f(0, 0)−∇f(0, 0) · (h, h)|
|(h, h)|

= lim
h→0

|h/2− h|
|
√

2h|
=

1

2
√

2
6= 0.

So the gradient does not satisfy the conditions of Definition 4.2. In fact, no linear map will and so that
function is not differentiable at (0, 0).

1That is there is a m× k matrix Ax0
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Remark. The notion of differentiability that we want requires the same linear approximation to work
uniformly (in all directions). But the partial derivatives that we are used to only look in one direction at a
time. The existence of a gradient is necessary but not sufficient for Definition 4.2.

Let’s generalize these definitions to general spaces. In general, let (A, ‖ ·‖A) and (B, ‖ ·‖B) be Banach spaces
(complete normed vector spaces).2

Definition 4.3 (Fréchet Differential). We say a function f : A → B is Fréchet differentiable at a point
x0 ∈ A if there exists a continuous linear function f ′x0

: A→ B such that

lim
‖h‖A→0

∥∥f(x0 + h)− f(x0)− f ′x0
(h)
∥∥
B

‖h‖A
= 0.

If this is the case we call the linear map f ′x0
the Fréchet Differential at x0. We can alternatively formulate

this

lim
ε→0

sup
h∈S

‖f(x+ εh)− f(x)− εf ′x0
(h)‖b

ε
= 0.

for all bounded (finite diameter) sets S ⊂ A.

Example (Fréchet Differential). Let (A, ‖ · ‖∞) = (L∞, ‖ · ‖∞) and (B, ‖ · ‖B) = (R, | · |). For a point t0 ∈ T
and a function x : T → R ∈ L∞, let f(x) = x(t0)2. Fix x and consider the linear map on L∞ into R,
f ′x(h) = 2x(t0)h(t0). Then

lim
‖h‖A→0

∥∥f(x+ h)− f(x)− f ′x(h)
∥∥
B

‖h‖A
= lim
‖h‖→0

∣∣∣(x(t0) + h(t0)2
)
− x(t0)2 − 2x(t0)h(t0)

∣∣∣
‖h‖∞

= lim
‖h‖∞→0

h(t0)2

‖h‖∞
≤ lim
‖h‖∞→0

‖h‖∞ = 0

This generalizes the concept of a fully differentiable function, but what about directionally differentiable
functions? For those we consider the Gateaux Differential.

Definition 4.4 (Gateaux Differential). A function f : A→ B is Gateaux differentiable at the point x0 ∈ A
in the direction h ∈ A if there exists a linear map Γx0

: A→ B such that

lim
ε→0

∥∥f(x+ εh)− f(x)− εΓx(h)
∥∥
B

ε
= 0.

In this case we call the map Γx(·) the Gateaux Differential in the direction h and denote df(x0;h) = Γx(·).

Note that this is defined in each direction as opposed the Fréchet differential which is defined uniformly for
all directions. Whenever the Fréchet differential exists the Gateaux differential will exist and coincide with
the Fréchet.

The definitions of Fréchet differentiability is not quite what we need however. The following refinement
becomes more useful to applications in econometrics.

Definition 4.5 (Hadamard Differential). The function f : A → B is Hadamard differentiable at the point
x0 ∈ A if there exists a continuous linear function f ′x0

: A→ B with

lim
ε→0

sup
h∈S

∥∥f(x+ εh)− f(x)− εf ′x0
(h)
∥∥
B

ε
= 0.

for all compact sets S ⊂ A. If this is the case the continuous linear function f ′x0
is called the Hadamard

Differential at x0.

The key idea here is that tight random variables concentrate on compact sets, so Hadamard is what we need.

2In general, I think we only need metrizable topological spaces. This is what is said in Andres’ notes and in Van Der Vaart
and Wellner. However, all the definitions below are given in terms of norms so to avoid confusion we’ll just assume these are
complete normed spaces.
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4.3.2 Standard Delta Method

We are now ready to review the Delta Method. This discussion follows Andres’ notes as well as Chapter 3.9
in Van der Vaart and Wellner.

First recall some useful theorems.

Theorem 4.7 (Continuous Mapping Theorem). Suppose gn : D → E is a sequence of continuous maps
with gn(xn) → g(x) for some continuous map g and every convergent sequence xn → x with x ∈ D0 and

Pr(X ∈ D0) = 1. Then if Xn
L→ X in D then gn(Xn)

L→ g(X) in E.

This is a slight refinement of the continuous mapping theorem seen in Theorem 2.3, allowing for sequences
of continuous maps.

Lemma 4.6 (Convergent Sequences are Compact). If a sequence {xn} converges to a point x, then the set
{x, x1, x2, . . . } is compact (in any topological space).

Proof. Let {Ui}i∈I be an open cover of S = {x, x1, x2, . . . }. Pick a set Ux in {Ui}i∈I such that x ∈ Ux. This
is an open neighborhood of x so there must exist a number N such that for all n ≥ N , xn ∈ Ux. For the
finitely many points outside of Ux we can find sets in {Ui}i∈I that contain them.

We are now ready to show the Delta Method.

Theorem 4.8 (Delta Method). Let D and E be Banach Spaces and φ : D → E be Hadamard differentiable

at θ0 and suppose
√
n(Xn−θ0)

L→ X in D. Then
√
n
(
φ(Xn)− φ(θ0)

) L→ φ′θ0(X) where φ′θ0 is the Hadamard
Differential at θ0.

Proof. The goal will be to apply Theorem 4.7. Let gn(h) =
√
n
(
φ(θ0 + h√

n
)− φ(θ0)

)
and let g(h) = φ′θ0(h)

and suppose hn → h. We want to show that gn(hn)→ g(h).

lim
n→∞

|gn(hn)− g(h)| = lim
n→∞

∣∣∣∣√n(φ (θ0 + hn/
√
n
)
− φ(θ0)

)
− φ′θ0(h)

∣∣∣∣
Fix εn = 1/

√
n and rewrite

= lim
n→∞

∣∣∣∣ 1

εn

[
φ(θ0 + hnεn)− φ(θ0)− εnφ′θ0(h)

]∣∣∣∣
≤ lim
n→∞

∣∣∣∣ 1

εn

[
φ
(
θ0 + hnεn)

)
− φ(θ0)− εnφ′θ0(hn)

]∣∣∣∣+
∣∣φ′θ0(hn)− φ′θ0(h)

∣∣︸ ︷︷ ︸
→0 by continuity of φ′θ0

Since the last term goes to 0, consider only the first term and let S = {h, h1, h2, . . . }:

≤ lim
εn→0

sup
h̃∈S

∣∣∣∣ 1

εn

[
φ(θ0 + h̃εn)− φ(θ0)− εnφ′θ0(h̃)

]∣∣∣∣
By Lemma 4.6 the set S is compact and so this goes to zero because φ is Hadamard differentiable at θ0. We

can now apply Theorem 4.7 to show that gn
(√
n(Xn − θ0)

) L→ g(X). Plugging in we see that

gn
(√
n(Xn − θ0)

)
=
√
n

φ(θ0 +

√
n(Xn − θ0)√

n

)
− φ(θ0)


=
√
n
(
φ(Xn)− φ(θ0)

)
L→ φ′θ0(X)
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4.3.3 Delta Method Examples

We now turn to some examples to show the usefulness of Theorem 4.8.

Example 4.1 (Regression Coeffecients). Suppose β0 ∈ Rk and
√
n(β̂ − β0)

L→ N(0,Σ). Let φ : Rk → Rm

be differentiable.3 Then
√
n(φ(β̂)− φ(β))

L→ φ′β0
(Z) where Z ∼ N(0,Σ).

What does this mean? Recall that any continuous linear map from Rk to Rm can be expressed as a matrix
(an element of Rm×k). Specifically we can write φ = (φ1, . . . , φm)

′
, where each φi : Rk → R. Then

φ′β0
=
(
∇φ1(β0), . . . ,∇φm(β0)

)′ ∈ Rm×k. Then

φ′β0
(Z) ∼ N

(
0, φ′β0

Σφβ0

)
.

Example 4.2 (Uniform Semi-Parametric Inference). Suppose Y = m(X,β0) + ε where E[ε|X] = 0 and

β ∈ RK and {Yi, Xi} an i.i.d sample. Under usual assumptions we will get that
√
n(β̂ − β0)

L→ N(0,Σ). To

forecast E[Y |X = x0] = m(x0, β0) we want to use m(x0, β̂). If m(x0, ·) is differentiable we can use Delta

Method (Theorem 4.8) to show that
√
n(m(x0, β̂)−m(x0, β0))

L→ ∇βm(x0, β0)Z where Z ∼ N(0,Σ).

This is good for inference at a single point x0, but what if we want a uniform confidence interval for
E[Y |X = x] for all points x in some set X. Let φ : Rk → L∞(X) be given by φ(β) = m(·, β). That is,
for each β we can give an m(x, β) for each point x ∈ X. This defines a function on L∞(X). Assume that
supm(·, ·) and ∇βm(·, ·) are continuous and X is compact. Our guess for φ′β0

is just φ′β0
(β) = ∇βm(·, β0)β.

1. φ′β0
: Rk → L∞(X) is just like φ : Rk → L∞, both take in a β and return a function on X.

2. Clearly φ′β0
is linear (in β) and if βn → β in Rk then φ′β0

(βn) → φ′β0
(β) in L∞(X). In other words,

φ′β0
is continuous.

‖φ′β0
(βn)− φ′β0

(β)‖∞ = sup
x∈X
‖∇βm(x, β0)(βn − β)‖ ≤ sup

x∈X
‖∇βm(x, β0)‖︸ ︷︷ ︸

finite by compactness

· ‖βn − β‖︸ ︷︷ ︸
→ 0

Given this guess for φ′β0
lets check Hadamard Differentiability (Definition 4.5) at β0. Let B be an arbitrary

compact set in Rk:4

lim
εn→0

sup
h∈B

‖φ(β0 + εnh)− φ(β0)− εnφ′β0
(h)‖∞

εn
= lim
εn→0

sup
h∈B

∥∥m(x, β0 + εnh)−m(x, β0)− εn∇βm(x, β0)h
∥∥
∞

εn

By mean value theorem, for some β̄(x) ∈ [β0, β0 + εnh]:

= lim
εn→0

sup
h∈B

sup
x∈X

∣∣∇βm(x, β̄(x))h−∇βm(x, β0)h
∣∣

≤ lim
εn→0

sup
h∈B

sup
x∈X
‖∇βm(x, β̄(x))−∇βm(x, β0)‖ · ‖h‖

The first term on the right goes to zero uniformly for all x ∈ X by continuity of m(·, ·) and compactness of X.
The second term is bounded by compactness of B and so the whole thing goes to 0. Since φ : Rk → L∞(X),
φ(β) = m(·, β) is Hadamard Differentiable at β0 with φ′β0

(β) = ∇βm(·, β0)β, the Delta Method (Theorem 4.8)
gives us that √

n
(
β̂ − β0

)
L→ Z =⇒

√
n(φ(β̂)− φ(β0))

L→ φ′β0
(Z).

in other words, √
n
(
m(·, β̂)−m(·, β0)

)
L→ ∇βm(·, β0)Z.

where the convergence is in L∞(X), that is uniformly over x ∈ X.

3In Rk Fréchet and Hadamard differentiability are equivalent.
4We should note that even if we restrict β0 to be in some set Θ ⊂ Rk, compactness is invariant to superspaces. That is, let

A ⊂ Θ be compact with respect to the subspace topology on Θ. Then A is compact with respect to Rk.
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Example 4.3 (Uniform Standard Deviation Estimation). Suppose we have a class of function of square
integrable functions, F = {f : Rk → R} and X ∈ Rk is a random variable such that E[f(X)] = 0 for all
f ∈ F . Suppose for each f ∈ F we want to study the limiting behavior of the empirical standard deviation√√√√ 1

n

n∑
i=1

f2(xi)

By the delta method, since the derivative of
√
x is 1

2
√
x

, if
√
n(Enf2 − Ef2)→ N(0, σ2(f2)) then

√
n
(√

Enf2 −
√
Ef2

)
L→ N

(
0,

1

4

√
σ2(f2)

)
.

This is all good for a since function f ∈ F , but suppose that we want to conduct inference uniformly over
F . Let F2 = {f2 : f ∈ F}. Assume that F2 is Donsker so that Gn → G for a tight element G in L∞(F2).
Also assume that 0 < inff∈F Ef2 < supf∈F Ef2 <∞.

Let φ : L∞(F2) → L∞(F2) be given by φ(G)(f2) =
√
G(f2). It is useful here to recall that G ∈ L∞(F2)

is a (bounded) function from F2 → R. Let’s consider applying φ to the function θ0(f) = Ef2 and guess
that φ′0(G)(f) = 1

2
√

Ef2
G(f), which is clearly linear in G. It is also easy to verify continuity since Ef2 is

bounded from below uniformly for f ∈ F . Let’s verify that this function satisfies the property required of
the Hadamard Differential (Definition 4.5). Let S be a compact set in L∞(F):

lim
εn→0

sup
h∈S

‖φ(θ0 + hεn)− φ(θ0)− φ′0(hεn)‖
εn

= lim
εn→0

sup
h∈S

sup
f2∈F2

∣∣∣∣√θ0(f2) + εnh(f2)−
√
θ0(f2)− εn h(f2)

2
√
θ0(f2)

∣∣∣∣
εn

Again applying mean value theorem, for some θ̄ ∈ [θ0, θ0 + εnh] (containment is pointwise):

= lim
εn→0

sup
h∈S

sup
f2∈F2

∣∣∣∣∣ h(f2)

2
√
θ̄n(f2)

− h(f2)

2
√
θ0(f2)

∣∣∣∣∣
≤ lim
εn→0

sup
h∈S

sup
f2∈F2

∣∣∣∣∣ 1

2
√
θ̄n(f2)

− 1

2
√
θ0(f2)

∣∣∣∣∣ ∣∣∣h(f2)
∣∣∣

The first term goes to zero uniformly and the second term is bounded uniformly because S is compact.5

This verifies Hadamard differentiability. Applying the Delta Method then gives us that

√
n
(√

Enf2 −
√
Ef2

)
L→ G(f2)

2
√

Ef2
uniformly for f ∈ F .

Remark. Comments on the delta method:

• Delta method is very powerful in infinite dimensions

• Lots of examples, e.j going from uniform inference on the empirical CDF to inference on the empirical
quantile process.

• Domain and rules can be complicated, though have to be careful with norms.

4.4 Directionally Differentiable Functions

The Delta Method in Theorem 4.8 works if the function φ is Hadamard Differentiable. However, what if we
only have directional differentiability of φ? Let’s first review what directionally differentiable means.

5Recall that h ∈ S ∈ L∞(F2). This means that h is a bounded function from F2 onto R so that εnh→ 0. Compactness of
S gives uniform boundedness which then gives uniform convergence of εnh over S.
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Definition 4.6 (Directional Hadamard Differential). Let A and B be Banach spaces and let φ : Aφ ⊆ A→
B. The map φ is Hadamard directionally differentiable at θ0 ∈ Aφ tangentially to a set A0 ⊆ A if there is a
continuous map φ′θ0 : A0 → B such that

lim
n→∞

∥∥∥φ(θ0 + εnhn)− φ(θ0)− εnφ′θ0(h)
∥∥∥
B

εn
= 0 (4.2)

for all hn → h ∈ A0 and εn ↓ 0. In this case, the map φ′θ0 is called the Hadamard directional differential at
θ0 tangent to A0.

Example 4.4 (Directional Differentiability). Let’s consider the function φ : R → R+, x 7→ max{x, 0}. We
want to show that this function is Hadamard directionally differentiable tangent to R at any point x0 ∈ R
with directional differential given by

φ′x0
(h) =


h if x0 > 0

max{h, 0} if x0 = 0

0 if x0 < 0

.

Intuitively, we can see why this would be the case. If x0 is above zero then locally in a neighborhood around
x0, φ(x) is equal to x, if x0 equals zero then in any neighborhood around x0 φ(x) is equal to x if x > 0 and
0 otherwise, and if x0 is less than zero then φ(x) is equal to zero uniformly in a neighborhood around x0.

We can clearly see that this is a continuous function in h for any x0 so what remains is to verify eq. (4.2).
Take any x0 and any sequence hn → h and εn ↓ 0.

lim
n→∞

∣∣∣max{x0 + εnhn, 0} −max{x0, 0} − εnφ′θ0(h)
∣∣∣

εn
(Ex-1)

Formally apply the intuition above: if x0 > 0 eventually we will have x0 + εnhn > 0. In this case (Ex-1) will
reduce to:

lim
n→∞

|x0 + εnhn − x0 − εnh|
εn

= lim
n→∞

hn − h = 0.

If x0 < 0 eventually we will have x0 + εnhn < 0. After this point (Ex-1) reduces to:

lim
n→∞

∣∣∣−εnφ′θ0(h)
∣∣∣

εn
= 0.

Finally, if x0 = 0 then (Ex-1) reduces to:

lim
n→∞

∣∣max{εnhn, 0} − εn max{h, 0}
∣∣

εn
= lim
n→∞

∣∣max{hn, 0} −max{h, 0}
∣∣ = 0.

where in the first equality we use that εn is decreasing towards zero and in the second we use continuity of
max{x, 0}.

Theorem 4.9 (Delta Method For Directionally Differentiable Functions). Suppose
√
n (θn − θ0)

L→ X for
a random element X in A0. If φ : A→ B is Hadamard directionally differentiable at θ0 tangent to A0 with
directional differential φ′θ0 then:

√
n
(
φ(θn)− φ(θ0)

) L→ φ′θ0(X),

Proof. Proof follows the same steps as Theorem 4.8. Again take gn(h) =
√
n
(
φ(θ0 + h√

n
)− φ(θ0)

)
and

g(h) = φ′θ0(h).We want to apply Theorem 4.7 so we want to show that if hn → h, gn(hn) → g(h) for any
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sequence hn converging to an h ∈ A0. Letting εn = 1/
√
n and following verbatim the first two lines in the

proof of Theorem 4.8 gives us that

lim
n→∞

∣∣gn(hn)− g(h)
∣∣ = lim

n→∞

∣∣∣φ(θ0 + εnhn)− φ(θ0)− εnφ′θ0(h)
∣∣∣

εn

Applying the definition of Hadamard directional differentiability we see that this term goes to zero as εn → 0
and hn → h. Rest of the proof follows exactly that of Theorem 4.8.

Example 4.5 (Delta Method for Directionally Differentiable Functions). Suppose E[X2] <∞ and we have

an i.i.d sample from X, X1, X2, . . . with Xi ∼ X. Let θ0 = E[X] and θ̂n = 1
n

∑n
i=1Xi. By the Lindeberg

Central Limit Theorem (Theorem 4.2) we have that

√
n
(
θ̂n − θ0

)
L→ N(0, σ2

X).

Suppose are interested in conducting inference on the quantity φ(θ0) = max{θ0, 0}. In Example 4.4 we
verified that φ(·) is directionally differentiable everywhere tangent to R with Hadamard directional differential
at (arbitrary point) x0:

φ′x0
(h) =


h if x0 > 0

max{h, 0} if x0 = 0

0 if x0 < 0

.

So we can apply Theorem 4.9 to get that

√
n
(

max{θ̂n, 0} −max{θ0, 0}
)

L→ φ′θ0 (σXZ) .

where Z ∼ N(0, 1).

4.5 Inference on Directionally Differentiable Functions

In this section we’ll briefly cover the results in Fang and Santos (2019, ReStud). Specifically, we’ll want to
cover how bootstrap methods differ when functions are only directionally (as opposed to fully) differentiable.

Throughout this discussion, let’s let θ̂∗n denote a “bootstrapped version” of θ̂n and assume the limiting

distribution of rn{θ̂n − θ0} can be consistently estimated by the conditional law of

rn

{
θ̂∗n − θ̂n

}
.

In order to allow for diverse resampling schemes, simply appose that θ̂∗n is a function of the data {Xi} and
some random weights {Wi} that are independent of {Xi}. Recall that from Theorem 3.10 weak convergence
of probability measures on a space X is equivalent to convergence in the bounded lipschitz metric

dBL (P1, P2) = sup
f∈BL1(A)

∣∣∣∣∫ f(a) dP1 −
∫
f(a)dP2

∣∣∣∣ .
The above is summarized in the following assumption:

Assumption 4.1 (Assumption 3, Fang and Santos (2019)). Asumme that

1. θ̂∗n : {Xi,Wi}ni=1 → Dφ with {Wi} independent of Xi.

2. θ̂∗n satisfies supf∈BL1(D) |E[f(rn{θ̂∗n − θ̂n}|{Xi}]− E[f(G0)]| = op(1).

3. rn{θ̂∗n − θ̂n} is asymptotically measurable (jointly in {Xi,Wi}).
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4. f(rn{θ̂∗n − θ̂n}) is a measurable function of {Wi}, outer almost surely in {Xi} for any continuous and
bounded f : D→ R.

We will then be interested in bootstrap procedures to estimate the distribution of rn{φ(θ̂n)− φ(θ0)}. Now

give an important theorem characterizing when we can use a plug in bootstrap estimator, φ(θ̂∗n).

Theorem 4.10 (Theorem 3.1, Fang and Santos (2019)). Assume that D and E are Banach spaces with

norms ‖ · ‖D and ‖ · ‖E. Also assume that θ0 ∈ Dφ, the domain of φ, and that rn{θ̂n − θ0}
L→ G0 for some

tight gaussian element G0. Then under Assumption 4.1 it follows that φ is fully Hadamard differentiable at
θ0 ∈ Dφ tangentially to the support of G0 if and only if:

sup
f∈BL1(E)

|E[f(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1) (4.3)

This is a positive result if your function φ is fully Hadamard differentiable (Definition 4.5), but a nega-
tive result otherwise. For example, the standard bootstrap would fail if the function φ is only Hadamard
directionally differentiable tangent to the support of G0 (Definition 4.6), as in the case of Example 4.4.

The following supplemental theorem forms the backbone of the proof of Theorem 4.10.

Theorem 4.11 (Theorem S.3.1, Fang and Santos (2019)). Assume that D and E are Banach spaces with

norms ‖·‖D and ‖·‖E. Also assume that θ0 ∈ Dφ, the domain of φ, and that rn{θ̂n−θ0}
L→ G0 for some tight

gaussian element G0 that contains zero in it’s support. Finally assume that φ : Dφ ⊆ D → E is Hadamard
directionally differentiable at θ0 tangent to the support of G0. Then under Assumption 4.1 the following
statments are equivalent:

1. E[f(φ′θ0(G0))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] for all a0 ∈ supp(G0) and f ∈ BL1(E).

2. supf∈BL1(E) |E[f(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[f(φ′θ0(G0)]| = op(1)

This is useful as, using Theorem 3.10, the second statment is equivalent to weak convergence of the boot-
strap distribution, rn{φ(θ̂∗n) − φ(θ̂n)} to the limiting distribution of rn{φ(θ̂) − φ(θ0)} given by φ′θ0(G0) via
Theorem 4.9. The first statement can then be shown to be equivalent to full Hadamard differentiability of
φ at θ0.1

Given this negative result for näıve bootstrap inference on directionally diffentiable functions, Fang and
Santos propose a modified bootstrap procedure that is consistent more generally. To use thie valid bootstrap
procedure we will need a consistent estimator for the Hadamard directional differential θ̂′n in the following
sense:

Assumption 4.2 (Assumption 4, Fang and Santos (2019)). The map θ̂′n : D → E is a function {Xi}ni=1

such that for every compact set K ⊆ D0 and every ε > 0:

lim
δ↓0

lim sup
n→∞

P

(
sup
h∈Kδ

‖φ̂′n(h)− φ′θ0(h)‖E > ε

)
= 0 (4.4)

where we recall that Kδ = {x : d(x,K) < δ} is the δ-expansion of K.

Remark (Remark 3.3, Fang and Santos (2019)). In certain applications, for example if D = Rd or if D
is separable and rn{θ̂∗n − θ̂n} is Borel measurable as a function of {Xi,Wi} then (4.4) can be relaxed to
verifying the following

sup
h∈K
‖φ̂′n(h)− φ′θ0(h)‖E = op(1) (4.5)

for any compact set K ⊆ D.

In either case, we get the following consistent bootstrap procedure that works even if the function φ is only
Hadamard directionally differentiable.

1One direction is easy, only the returning direction is difficult.
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Theorem 4.12 (Theorem 3.2, Fang and Santos (2019)). Assume that D and E are Banach spaces with

norms ‖ · ‖D and ‖ · ‖E. Also assume that θ0 ∈ Dφ, the domain of φ, and that rn{θ̂n − θ0}
L→ G0 for

some tight gaussian element G0 that contains zero in it’s support. Finally assume that φ : Dφ ⊆ D → E is
Hadamard directionally differentiable at θ0 tangent to the support of G0. Then under Assumption 4.1 and
Assumption 4.2

sup
f∈BL1(E)

|E[f(φ̂′n(rn{θ̂∗n − θ̂n}))|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1).

Theorem 4.12 shows that the conditional distribution of φ̂′n(rn{θ̂∗n − θ̂n}) given the data is a consistent

estimator of the limiting distribution of rn{φ(θ̂n)− φ(θ0)}.
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